6 research outputs found

    Completeness of Randomized Kinodynamic Planners with State-based Steering

    Full text link
    Probabilistic completeness is an important property in motion planning. Although it has been established with clear assumptions for geometric planners, the panorama of completeness results for kinodynamic planners is still incomplete, as most existing proofs rely on strong assumptions that are difficult, if not impossible, to verify on practical systems. In this paper, we focus on an important class of kinodynamic planners, namely those that interpolate trajectories in the state space. We provide a proof of probabilistic completeness for these planners under assumptions that can be readily verified from the system's equations of motion and the user-defined interpolation function. Our proof relies crucially on a property of interpolated trajectories, termed second-order continuity (SOC), which we show is tightly related to the ability of a planner to benefit from denser sampling. We analyze the impact of this property in simulations on a low-torque pendulum. Our results show that a simple RRT using a second-order continuous interpolation swiftly finds solution, while it is impossible for the same planner using standard Bezier curves (which are not SOC) to find any solution.Comment: 21 pages, 5 figure

    Probabilistic completeness of RRT for geometric and kinodynamic planning with forward propagation

    Full text link
    The Rapidly-exploring Random Tree (RRT) algorithm has been one of the most prevalent and popular motion-planning techniques for two decades now. Surprisingly, in spite of its centrality, there has been an active debate under which conditions RRT is probabilistically complete. We provide two new proofs of probabilistic completeness (PC) of RRT with a reduced set of assumptions. The first one for the purely geometric setting, where we only require that the solution path has a certain clearance from the obstacles. For the kinodynamic case with forward propagation of random controls and duration, we only consider in addition mild Lipschitz-continuity conditions. These proofs fill a gap in the study of RRT itself. They also lay sound foundations for a variety of more recent and alternative sampling-based methods, whose PC property relies on that of RRT

    Admissible Velocity Propagation : Beyond Quasi-Static Path Planning for High-Dimensional Robots

    Full text link
    Path-velocity decomposition is an intuitive yet powerful approach to address the complexity of kinodynamic motion planning. The difficult trajectory planning problem is solved in two separate, simpler, steps: first, find a path in the configuration space that satisfies the geometric constraints (path planning), and second, find a time-parameterization of that path satisfying the kinodynamic constraints. A fundamental requirement is that the path found in the first step should be time-parameterizable. Most existing works fulfill this requirement by enforcing quasi-static constraints in the path planning step, resulting in an important loss in completeness. We propose a method that enables path-velocity decomposition to discover truly dynamic motions, i.e. motions that are not quasi-statically executable. At the heart of the proposed method is a new algorithm -- Admissible Velocity Propagation -- which, given a path and an interval of reachable velocities at the beginning of that path, computes exactly and efficiently the interval of all the velocities the system can reach after traversing the path while respecting the system kinodynamic constraints. Combining this algorithm with usual sampling-based planners then gives rise to a family of new trajectory planners that can appropriately handle kinodynamic constraints while retaining the advantages associated with path-velocity decomposition. We demonstrate the efficiency of the proposed method on some difficult kinodynamic planning problems, where, in particular, quasi-static methods are guaranteed to fail.Comment: 43 pages, 14 figure

    運動計画をフィードバックループに含むヒューマノイドロボットの多点接触全身制御のための計算基盤

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 中村 仁彦, 東京大学教授 下山 勲, 東京大学教授 稲葉 雅幸, 東京大学教授 國吉 康夫, 東京大学准教授 高野 渉, LAAS-CNRSSenior Researcher LAUMOND Jean-PaulUniversity of Tokyo(東京大学

    Completeness of randomized kinodynamic planners with state-based steering

    No full text
    International audienceProbabilistic completeness is an important property in motion planning. Although it has been established with clear assumptions for geometric planners, the panorama of completeness results for kinodynamic planners is still incomplete, as most existing proofs rely on strong assumptions that are difficult, if not impossible, to verify on practical systems. In this paper, we focus on an important class of kinodynamic planners, namely those that interpolate trajectories in the state space. We provide a proof of probabilistic completeness for such planners under assumptions that can be readily verified from the system’s equations of motion and the user-defined interpolation function. Our proof relies crucially on a property of interpolated trajectories, termed second-order continuity (SOC), which we show is tightly related to the ability of a planner to benefit from denser sampling. We analyze the impact of this property in simulations on a low-torque pendulum. Our results show that a simple RRT using a second-order continuous interpolation swiftly finds solution, while it is impossible for the same planner using standard Bezier curves (which are not SOC) to find any solution

    Completeness of randomized kinodynamic planners with state-based steering

    No full text
    The panorama of probabilistic completeness results for kinodynamic planners is still confusing. Most existing completeness proofs require strong assumptions that are difficult, if not impossible, to verify in practice. To make completeness results more useful, it is thus sensible to establish a classification of the various types of constraints and planning methods, and then attack each class with specific proofs and hypotheses that can be verified in practice. We propose such a classification, and provide a proof of probabilistic completeness for an important class of planners, namely those whose steering method is based on the interpolation of system trajectories in the state space. We also provide design guidelines for the interpolation function and discuss two criteria arising from our analysis: local boundedness and acceleration compliance.Accepted versio
    corecore