370 research outputs found

    Completeness for a First-order Abstract Separation Logic

    Full text link
    Existing work on theorem proving for the assertion language of separation logic (SL) either focuses on abstract semantics which are not readily available in most applications of program verification, or on concrete models for which completeness is not possible. An important element in concrete SL is the points-to predicate which denotes a singleton heap. SL with the points-to predicate has been shown to be non-recursively enumerable. In this paper, we develop a first-order SL, called FOASL, with an abstracted version of the points-to predicate. We prove that FOASL is sound and complete with respect to an abstract semantics, of which the standard SL semantics is an instance. We also show that some reasoning principles involving the points-to predicate can be approximated as FOASL theories, thus allowing our logic to be used for reasoning about concrete program verification problems. We give some example theories that are sound with respect to different variants of separation logics from the literature, including those that are incompatible with Reynolds's semantics. In the experiment we demonstrate our FOASL based theorem prover which is able to handle a large fragment of separation logic with heap semantics as well as non-standard semantics.Comment: This is an extended version of the APLAS 2016 paper with the same titl

    Automatically Verifying Temporal Properties of Pointer Programs with Cyclic Proof

    Get PDF
    In this article, we investigate the automated verification of temporal properties of heap-aware programs. We propose a deductive reasoning approach based on cyclic proof. Judgements in our proof system assert that a program has a certain temporal property over memory state assertions, written in separation logic with user-defined inductive predicates, while the proof rules of the system unfold temporal modalities and predicate definitions as well as symbolically executing programs. Cyclic proofs in our system are, as usual, finite proof graphs subject to a natural, decidable soundness condition, encoding a form of proof by infinite descent. We present a proof system tailored to proving CTL properties of nondeterministic pointer programs, and then adapt this system to handle fair execution conditions. We show both versions of the system to be sound, and provide an implementation of each in the Cyclist theorem prover, yielding an automated tool that is capable of automatically discovering proofs of (fair) temporal properties of pointer programs. Experimental evaluation of our tool indicates that our approach is viable, and offers an interesting alternative to traditional model checking techniques

    Compositional Satisfiability Solving in Separation Logic

    Get PDF
    We introduce a novel decision procedure to the satisfiability problem in array separation logic combined with general inductively defined predicates and arithmetic. Our proposal differentiates itself from existing works by solving satisfiability through compositional reasoning. First, following Fermat’s method of infinite descent, it infers for every inductive definition a “base” that precisely characterises the satisfiability. It then utilises the base to derive such a base for any formula where these inductive predicates reside in. Especially, we identify an expressive decidable fragment for the compositionality. We have implemented the proposal in a tool and evaluated it over challenging problems. The experimental results show that the compositional satisfiability solving is efficient and our tool is effective and efficient when compared with existing solvers
    • …
    corecore