3 research outputs found

    Completeness and Consistency Analysis for Evolving Knowledge Bases

    Full text link
    Assessing the quality of an evolving knowledge base is a challenging task as it often requires to identify correct quality assessment procedures. Since data is often derived from autonomous, and increasingly large data sources, it is impractical to manually curate the data, and challenging to continuously and automatically assess their quality. In this paper, we explore two main areas of quality assessment related to evolving knowledge bases: (i) identification of completeness issues using knowledge base evolution analysis, and (ii) identification of consistency issues based on integrity constraints, such as minimum and maximum cardinality, and range constraints. For completeness analysis, we use data profiling information from consecutive knowledge base releases to estimate completeness measures that allow predicting quality issues. Then, we perform consistency checks to validate the results of the completeness analysis using integrity constraints and learning models. The approach has been tested both quantitatively and qualitatively by using a subset of datasets from both DBpedia and 3cixty knowledge bases. The performance of the approach is evaluated using precision, recall, and F1 score. From completeness analysis, we observe a 94% precision for the English DBpedia KB and 95% precision for the 3cixty Nice KB. We also assessed the performance of our consistency analysis by using five learning models over three sub-tasks, namely minimum cardinality, maximum cardinality, and range constraint. We observed that the best performing model in our experimental setup is the Random Forest, reaching an F1 score greater than 90% for minimum and maximum cardinality and 84% for range constraints.Comment: Accepted for Journal of Web Semantic

    An Automatic Ontology Generation Framework with An Organizational Perspective

    Get PDF
    Ontologies have been known for their powerful semantic representation of knowledge. However, ontologies cannot automatically evolve to reflect updates that occur in respective domains. To address this limitation, researchers have called for automatic ontology generation from unstructured text corpus. Unfortunately, systems that aim to generate ontologies from unstructured text corpus are domain-specific and require manual intervention. In addition, they suffer from uncertainty in creating concept linkages and difficulty in finding axioms for the same concept. Knowledge Graphs (KGs) has emerged as a powerful model for the dynamic representation of knowledge. However, KGs have many quality limitations and need extensive refinement. This research aims to develop a novel domain-independent automatic ontology generation framework that converts unstructured text corpus into domain consistent ontological form. The framework generates KGs from unstructured text corpus as well as refine and correct them to be consistent with domain ontologies. The power of the proposed automatically generated ontology is that it integrates the dynamic features of KGs and the quality features of ontologies

    Automated Knowledge Base Quality Assessment and Validation based on Evolution Analysis

    Get PDF
    In recent years, numerous efforts have been put towards sharing Knowledge Bases (KB) in the Linked Open Data (LOD) cloud. These KBs are being used for various tasks, including performing data analytics or building question answering systems. Such KBs evolve continuously: their data (instances) and schemas can be updated, extended, revised and refactored. However, unlike in more controlled types of knowledge bases, the evolution of KBs exposed in the LOD cloud is usually unrestrained, what may cause data to suffer from a variety of quality issues, both at a semantic level and at a pragmatic level. This situation affects negatively data stakeholders – consumers, curators, etc. –. Data quality is commonly related to the perception of the fitness for use, for a certain application or use case. Therefore, ensuring the quality of the data of a knowledge base that evolves is vital. Since data is derived from autonomous, evolving, and increasingly large data providers, it is impractical to do manual data curation, and at the same time, it is very challenging to do a continuous automatic assessment of data quality. Ensuring the quality of a KB is a non-trivial task since they are based on a combination of structured information supported by models, ontologies, and vocabularies, as well as queryable endpoints, links, and mappings. Thus, in this thesis, we explored two main areas in assessing KB quality: (i) quality assessment using KB evolution analysis, and (ii) validation using machine learning models. The evolution of a KB can be analyzed using fine-grained “change” detection at low-level or using “dynamics” of a dataset at high-level. In this thesis, we present a novel knowledge base quality assessment approach using evolution analysis. The proposed approach uses data profiling on consecutive knowledge base releases to compute quality measures that allow detecting quality issues. However, the first step in building the quality assessment approach was to identify the quality characteristics. Using high-level change detection as measurement functions, in this thesis we present four quality characteristics: Persistency, Historical Persistency, Consistency and Completeness. Persistency and historical persistency measures concern the degree of changes and lifespan of any entity type. Consistency and completeness measures identify properties with incomplete information and contradictory facts. The approach has been assessed both quantitatively and qualitatively on a series of releases from two knowledge bases, eleven releases of DBpedia and eight releases of 3cixty Nice. However, high-level changes, being coarse-grained, cannot capture all possible quality issues. In this context, we present a validation strategy whose rationale is twofold. First, using manual validation from qualitative analysis to identify causes of quality issues. Then, use RDF data profiling information to generate integrity constraints. The validation approach relies on the idea of inducing RDF shape by exploiting SHALL constraint components. In particular, this approach will learn, what are the integrity constraints that can be applied to a large KB by instructing a process of statistical analysis, which is followed by a learning model. We illustrate the performance of our validation approach by using five learning models over three sub-tasks, namely minimum cardinality, maximum cardinality, and range constraint. The techniques of quality assessment and validation developed during this work are automatic and can be applied to different knowledge bases independently of the domain. Furthermore, the measures are based on simple statistical operations that make the solution both flexible and scalable
    corecore