3,750 research outputs found

    Improving Texture Categorization with Biologically Inspired Filtering

    Full text link
    Within the domain of texture classification, a lot of effort has been spent on local descriptors, leading to many powerful algorithms. However, preprocessing techniques have received much less attention despite their important potential for improving the overall classification performance. We address this question by proposing a novel, simple, yet very powerful biologically-inspired filtering (BF) which simulates the performance of human retina. In the proposed approach, given a texture image, after applying a DoG filter to detect the "edges", we first split the filtered image into two "maps" alongside the sides of its edges. The feature extraction step is then carried out on the two "maps" instead of the input image. Our algorithm has several advantages such as simplicity, robustness to illumination and noise, and discriminative power. Experimental results on three large texture databases show that with an extremely low computational cost, the proposed method improves significantly the performance of many texture classification systems, notably in noisy environments. The source codes of the proposed algorithm can be downloaded from https://sites.google.com/site/nsonvu/code.Comment: 11 page

    Scale Selective Extended Local Binary Pattern for Texture Classification

    Full text link
    In this paper, we propose a new texture descriptor, scale selective extended local binary pattern (SSELBP), to characterize texture images with scale variations. We first utilize multi-scale extended local binary patterns (ELBP) with rotation-invariant and uniform mappings to capture robust local micro- and macro-features. Then, we build a scale space using Gaussian filters and calculate the histogram of multi-scale ELBPs for the image at each scale. Finally, we select the maximum values from the corresponding bins of multi-scale ELBP histograms at different scales as scale-invariant features. A comprehensive evaluation on public texture databases (KTH-TIPS and UMD) shows that the proposed SSELBP has high accuracy comparable to state-of-the-art texture descriptors on gray-scale-, rotation-, and scale-invariant texture classification but uses only one-third of the feature dimension.Comment: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 201
    • …
    corecore