10 research outputs found

    Complete Parameterization of Piecewise-Polynomial Interpolation Kernels

    Get PDF
    Every now and then, a new design of an interpolation kernel shows up in the literature. While interesting results have emerged, the traditional design methodology proves laborious and is riddled with very large systems of linear equations that must be solved analytically. In this paper, we propose to ease this burden by providing an explicit formula that will generate every possible piecewise-polynomial kernel given its degree, its support, its regularity, and its order of approximation. This formula contains a set of coefficients that can be chosen freely and do not interfere with the four main design parameters; it is thus easy to tune the design to achieve any additional constraints that the designer may care for

    Complete parameterization of piecewise-polynomial interpolation kernels

    Full text link

    Short basis functions for constant-variance interpolation

    Full text link

    A Family of Smooth and Interpolatory Basis Functions for Parametric Curve and Surface Representation

    Get PDF
    Interpolatory basis functions are helpful to specify parametric curves or surfaces that can be modified by simple user-interaction. Their main advantage is a characterization of the object by a set of control points that lie on the shape itself (i.e., curve or surface). In this paper, we characterize a new family of compactly supported piecewise-exponential basis functions that are smooth and satisfy the interpolation property. They can be seen as a generalization and extension of the Keys interpolation kernel using cardinal exponential B-splines. The proposed interpolators can be designed to reproduce trigonometric, hyperbolic, and polynomial functions or combinations of them. We illustrate the construction and give concrete examples on how to use such functions to construct parametric curves and surfaces

    Continuous Medial Models in Two-Sample Statistics of Shape

    Get PDF
    In questions of statistical shape analysis, the foremost is how such shapes should be represented. The number of parameters required for a given accuracy and the types of deformation they can express directly influence the quality and type of statistical inferences one can make. One example is a medial model, which represents a solid object using a skeleton of a lower dimension and naturally expresses intuitive changes such as "bending", "twisting", and "thickening". In this dissertation I develop a new three-dimensional medial model that allows continuous interpolation of the medial surface and provides a map back and forth between the boundary and its medial axis. It is the first such model to support branching, allowing the representation of a much wider class of objects than previously possible using continuous medial methods. A measure defined on the medial surface then allows one to write integrals over the boundary and the object interior in medial coordinates, enabling the expression of important object properties in an object-relative coordinate system. I show how these properties can be used to optimize correspondence during model construction. This improved correspondence reduces variability due to how the model is parameterized which could potentially mask a true shape change effect. Finally, I develop a method for performing global and local hypothesis testing between two groups of shapes. This method is capable of handling the nonlinear spaces the shapes live in and is well defined even in the high-dimension, low-sample size case. It naturally reduces to several well-known statistical tests in the linear and univariate cases

    Sampling methods for parametric non-bandlimited signals:extensions and applications

    Get PDF
    Sampling theory has experienced a strong research revival over the past decade, which led to a generalization of Shannon's original theory and development of more advanced formulations with immediate relevance to signal processing and communications. For example, it was recently shown that it is possible to develop exact sampling schemes for a large class of non-bandlimited signals, namely, certain signals with finite rate of innovation. A common feature of such signals is that they have a parametric representation with a finite number of degrees of freedom and can be perfectly reconstructed from a finite number of samples. The goal of this thesis is to advance the sampling theory for signals of finite rate of innovation and consider its possible extensions and applications. In the first part of the thesis, we revisit the sampling problem for certain classes of such signals, including non-uniform splines and piecewise polynomials, and develop improved schemes that allow for stable and precise reconstruction in the presence of noise. Specifically, we develop a subspace approach to signal reconstruction, which converts a nonlinear estimation problem into the simpler problem of estimating the parameters of a linear model. This provides an elegant and robust framework for solving a large class of sampling problems, while offering more flexibility than the traditional scheme for bandlimited signals. In the second part of the thesis, we focus on applications of our results to certain classes of nonlinear estimation problems encountered in wideband communication systems, most notably ultra-wideband (UWB) systems, where the bandwidth used for transmission is much larger than the bandwidth or rate of information being sent. We develop several frequency domain methods for channel estimation and synchronization in UWB systems, which yield high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. We also propose algorithms that are suitable for identification of more realistic UWB channel models, where a received signal is made up of pulses with different pulse shapes. Finally, we extend our results to multidimensional signals, and develop exact sampling schemes for certain classes of parametric non-bandlimited 2-D signals, such as sets of 2-D Diracs, polygons or signals with polynomial boundaries

    New strategies for curve and arbitrary-topology surface constructions for design

    Get PDF
    This dissertation presents some novel constructions for curves and surfaces with arbitrary topology in the context of geometric modeling. In particular, it deals mainly with three intimately connected topics that are of interest in both theoretical and applied research: subdivision surfaces, non-uniform local interpolation (in both univariate and bivariate cases), and spaces of generalized splines. Specifically, we describe a strategy for the integration of subdivision surfaces in computer-aided design systems and provide examples to show the effectiveness of its implementation. Moreover, we present a construction of locally supported, non-uniform, piecewise polynomial univariate interpolants of minimum degree with respect to other prescribed design parameters (such as support width, order of continuity and order of approximation). Still in the setting of non-uniform local interpolation, but in the case of surfaces, we devise a novel parameterization strategy that, together with a suitable patching technique, allows us to define composite surfaces that interpolate given arbitrary-topology meshes or curve networks and satisfy both requirements of regularity and aesthetic shape quality usually needed in the CAD modeling framework. Finally, in the context of generalized splines, we propose an approach for the construction of the optimal normalized totally positive (B-spline) basis, acknowledged as the best basis of representation for design purposes, as well as a numerical procedure for checking the existence of such a basis in a given generalized spline space. All the constructions presented here have been devised keeping in mind also the importance of application and implementation, and of the related requirements that numerical procedures must satisfy, in particular in the CAD context
    corecore