
THÈSE NO 3058 (2004)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut de systèmes de communication

SECTION DES SYSTÈMES DE COMMUNICATION

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc. in Electrical Engineering, California Institute of Technology, Etats-Unis
et de nationalité serbe et monténégrine

acceptée sur proposition du jury:

Prof. M. Vetterli, directeur de thèse
Dr T. Blu, rapporteur

Prof. U. Mitra, rapporteur
Prof. K. Ramchandran, rapporteur

Lausanne, EPFL
2004

SAMPLING METHODS FOR PARAMETRIC
NON-BANDLIMITED SIGNALS:

EXTENSIONS AND APPLICATIONS

Irena MARAVIC



These No. 3058 (2004)
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Abstract

Sampling theory has experienced a strong research revival over the past decade,
which led to a generalization of Shannon’s original theory and development
of more advanced formulations with immediate relevance to signal processing
and communications. For example, it was recently shown that it is possible
to develop exact sampling schemes for a large class of non-bandlimited signals,
namely, certain signals with finite rate of innovation. A common feature of such
signals is that they have a parametric representation with a finite number of
degrees of freedom and can be perfectly reconstructed from a finite number of
samples.

The goal of this thesis is to advance the sampling theory for signals of fi-
nite rate of innovation and consider its possible extensions and applications. In
the first part of the thesis, we revisit the sampling problem for certain classes
of such signals, including non-uniform splines and piecewise polynomials, and
develop improved schemes that allow for stable and precise reconstruction in
the presence of noise. Specifically, we develop a subspace approach to signal
reconstruction, which converts a nonlinear estimation problem into the simpler
problem of estimating the parameters of a linear model. This provides an elegant
and robust framework for solving a large class of sampling problems, while offer-
ing more flexibility than the traditional scheme for bandlimited signals. In the
second part of the thesis, we focus on applications of our results to certain classes
of nonlinear estimation problems encountered in wideband communication sys-
tems, most notably ultra-wideband (UWB) systems, where the bandwidth used
for transmission is much larger than the bandwidth or rate of information being
sent. We develop several frequency domain methods for channel estimation and
synchronization in UWB systems, which yield high-resolution estimates of all
relevant channel parameters by sampling a received signal below the traditional
Nyquist rate. We also propose algorithms that are suitable for identification of
more realistic UWB channel models, where a received signal is made up of pulses
with different pulse shapes. Finally, we extend our results to multidimensional
signals, and develop exact sampling schemes for certain classes of parametric
non-bandlimited 2-D signals, such as sets of 2-D Diracs, polygons or signals with
polynomial boundaries.
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Résumé

La théorie de l’échantillonnage a récemment été l’objet d’un nouveau interêt
de la part de la communauté scientifique. Nombreuses contributions ont amené
à une généralisation de la théorie classique de Shannon avec un impact direct
pour le traitement du signal et les systèmes de communications. Par exemple, il
a été démontré qu’une large classe de signaux á bande non limitée peuvent être
reconstruits à partir d’un nombre fini d’échantillons. Il s’agit de signaux à taux
fini d’innovation, qui ont la caractéristique commune d’avoir une représentation
paramétrique avec un nombre fini de degrés de liberté, et de pouvoir être recon-
struits á partir d’un nombre fini d’échantillons.

Ce travail de thèse apporte une contribution á la théorie d’échantillonnage
pour les signaux à taux d’innovations fini et il explore les extensions et appli-
cations de cette théorie. Dans sa première partie, nous présentons la théorie
de d’échantillonnage pour une sous classe des signaux à taux fini d’innovation,
incluant des splines non uniformes et des polynômes par morceaux, ainsi que des
méthodes robustes pour leur reconstruction précise à partir de données bruitées.
Une attention particulière est consacrée à la méthode par sous espaces, qui per-
met de transformer la reconstruction du signal d’un problème non linéaire à un
problème linéaire. Nous obtenons ainsi une approche élégante et robuste pour
résoudre une large classe de problèmes de reconstruction à partir d’un jeu fini
d’échantillons, sans se restreindre aux signaux à bande limitée.

Dans la deuxième partie de ce manuscrit nous appliquons les résultats de
notre approche à l’échantillonnage aux problèmes d’estimation dans les systèmes
de communication a large bande, et en particulier aux systèmes “ultra-wideband”
(UWB). Dans ces derniers, la bande utilisée pour la transmission est con-
sidérablement plus large que le taux d’information envoyée. Nous développons
diverses méthodes fréquentielles pour l’estimation du canal et sa synchronisa-
tion dans les systèmes UWB. Celle-ci permettent d’obtenir des estimées à haute
résolution des paramètres le plus relevant du canal, à partir d’un échantillonnage
à une fréquence bien inférieure à celle classique de Nyquist. Nous proposons
aussi des algorithmes qui sont adaptés à l’identification de modèles de canal
UWB plus réalistes, où le signal reçu est composé de pulses de formes différentes.

Pour conclure, nous présentons une extension de nos résultats aux signaux
multidimensionnels et nous développons des méthodes de reconstruction par-
faites pour certaines classes de signaux paramétriques 2-D à bande non limitée,
comme les Diracs 2-D, les polygones ou les signaux à enveloppes polynomiales.

iii





Acknowledgements

I would like to thank:

My advisor, Martin Vetterli, for his guidance, support and his incredible pa-
tience with my ever-changing mood.

My LCAV/LCM colleagues, especially Paolo, Pietro, Rajesh, Nino and Chris,
for their friendship, and Jocelyne Plantefol for all her help.

My Caltech advisor, Demetri Psaltis, for his early guidance and support over
the years, and two great ladies, Lucinda Acosta and Yayun Liu, who made me
feel at home.

My “other” friends, George, Bojan, Milos, Ivanuska, Dragana and Xiaolin, for
their love and support.

And finally, my family, for all of the above and much more.

Lausanne, July 2004.

v





Contents

Abstract i

Résumé iii

Acknowledgements v

List of Figures xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Sampling schemes in the presence of noise . . . . . . . . . . 4
1.2.2 Alternative computational tools and methods for resolution

improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Communication applications . . . . . . . . . . . . . . . . . 5
1.2.4 Extension to two-dimensions . . . . . . . . . . . . . . . . . 6

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Sampling theory and model-based signal analysis . . . . . . 6
1.3.2 Two-dimensional sampling theory . . . . . . . . . . . . . . . 8
1.3.3 Applications to wideband communications . . . . . . . . . . 8

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

List of Acronyms 1

2 Fundamentals of Sampling Theory for Signals with Finite Rate of
Innovation 11
2.1 Signals with Finite Rate of Innovation . . . . . . . . . . . . . . . . 12
2.2 Periodic Stream of Diracs: Continuous-Time Case . . . . . . . . . . 13

2.2.1 Frequency domain formulation . . . . . . . . . . . . . . . . 13
2.2.2 Annihilating filter method . . . . . . . . . . . . . . . . . . . 14

2.3 Subspace-Based Approach . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Subspace solution based on the shift-invariance property . . 17
2.3.2 Relation between the subspace and the polynomial estimator 20

2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Extensions of the Subspace Methods . . . . . . . . . . . . . . . . . 23

2.5.1 Estimation of closely spaced Diracs: increasing the resolution 23
2.5.2 Constructing enhanced data matrix . . . . . . . . . . . . . . 25

2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



viii CONTENTS

3 Sampling Methods in the Presence of Noise 31
3.1 Sampling Schemes in the Presence of Noise: Problem Statement . . 32

3.2 Sampling Periodic Nonuniform Splines and Piecewise Polynomials . 34

3.2.1 Periodic nonuniform splines . . . . . . . . . . . . . . . . . . 34

3.2.2 Piecewise polynomials . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Model mismatch . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Aperiodic Signals of Finite Rate of Innovation . . . . . . . . . . . . 38

3.3.1 Streams of Diracs . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Nonuniform splines . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Piecewise polynomials . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Practical realization of the Gaussian sampling schemes . . . 41

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Periodic signals . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Finite length signals . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Model mismatch . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 High-Resolution Synchronization and Channel Estimation in Ultra-
Wideband Systems 51

4.1 Channel Estimation at Low Sampling Rate . . . . . . . . . . . . . . 52

4.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2 Bandpass sampling scheme . . . . . . . . . . . . . . . . . . 54

4.1.3 Subspace-based approach to channel estimation . . . . . . . 55

4.2 Estimating More Realistic Channel Models . . . . . . . . . . . . . . 57

4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Improvements of the Subspace Method . . . . . . . . . . . . . . . . 59

4.3.1 Filter bank approach . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Estimation from non-adjacent bands . . . . . . . . . . . . . 59

4.4 Numerical Performance and Complexity . . . . . . . . . . . . . . . 61

4.4.1 Analysis of noise sensitivity . . . . . . . . . . . . . . . . . . 61

4.4.2 Computational complexity and alternative solutions . . . . . 63

4.5 Low-Complexity Rapid Acquisition in UWB Localizers . . . . . . . . 64

4.5.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.2 Two-step estimation . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Timing performance . . . . . . . . . . . . . . . . . . . . . . 66

4.6.2 Two-step estimation . . . . . . . . . . . . . . . . . . . . . . 70

4.6.3 Estimation from non-adjacent bands . . . . . . . . . . . . . 70

4.6.4 Timing in the case of a non-ideal channel . . . . . . . . . . 71

4.6.5 Higher-rank channel models . . . . . . . . . . . . . . . . . . 72

4.6.6 Joint pulse shape and delay estimation . . . . . . . . . . . . 73

4.7 Application to CDMA systems . . . . . . . . . . . . . . . . . . . . 75

4.7.1 Channel estimation . . . . . . . . . . . . . . . . . . . . . . 75

4.7.2 Joint time delay and angle estimation . . . . . . . . . . . . 76

4.7.3 Channel estimation in W-CDMA systems: simulation results 77

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



CONTENTS ix

5 Sampling Methods for Classes of Periodic Non-Bandlimited 2-D Sig-
nals 81
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 2-D Signals of Finite Complexity . . . . . . . . . . . . . . . 83
5.2 Periodic Set of 2-D Diracs in Continuous Space . . . . . . . . . . . 83

5.2.1 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Annihilating filter approach: the separable case . . . . . . . 84
5.2.3 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Sampling schemes in the non-separable case . . . . . . . . . . . . . 87
5.3.1 Subspace-based approach . . . . . . . . . . . . . . . . . . . 88
5.3.2 Outline of the ACMP algorithm . . . . . . . . . . . . . . . 88

5.4 Extension to Lines and Polygons . . . . . . . . . . . . . . . . . . . 91
5.4.1 Line of finite length . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Polygonal line . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.3 Bilevel 2-D signals . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Numerical Performance and Algorithms in the Presence of Noise . . 93
5.5.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.2 Noisy case . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5.3 Estimation of the model order and model mismatch . . . . . 95

5.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Extension to Aperiodic and Radon Transform Case 103
6.1 Gaussian Sampling Scheme . . . . . . . . . . . . . . . . . . . . . . 104

6.1.1 Point spread function . . . . . . . . . . . . . . . . . . . . . 105
6.1.2 Noisy case . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Sampling the Radon transform . . . . . . . . . . . . . . . . . . . . 108
6.3 Extension to More Complex Classes of Signals . . . . . . . . . . . . 111

6.3.1 Bilevel polygon . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.2 Bilevel signal with piecewise polynomial boundary . . . . . . 112

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Conclusion 115
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 121

Curriculum Vitae 129





List of Figures

2.1 Periodic stream of Diracs A periodic signal of length 10000, made up

of 7 weighted Diracs, is passed through a lowpass filter and sampled uni-

formly at the critical rate, determined by the filter bandwidth. We consid-

ered 3 different filter bandwidths: B1 = [−500, 500], B2 = [−1000, 1000] and

B3 = [−1250, 1250]. (a) Magnitude of the signal spectrum and bands used

for estimation. (b) MSE of location estimates versus SNR. Solid lines cor-

respond to the case when the locations are randomly chosen according to a

uniform distribution over the interval [1, 10000], while dashed lines corre-

spond to the MSE in the case when the average spacing between components

is 20 (i.e. 0.2% of the signal period). . . . . . . . . . . . . . . . . . . . 27

2.2 Periodic stream of Diracs: Improving the Resolution (a) MSE of

location estimates for the original method and the matrix-shifting method

vs. SNR. For the latter method, the error is plotted for different values of

the shift parameter p. (b) MSE of location estimates vs. average spacing

between the components. The MSE of the original method is compared to

the MSE’s of the interleaving technique and the subspace-shifting approach. 29

2.3 Annihilating filter method We consider a periodic signal made up of

K = 7 Diracs, randomly distributed over the interval [1, 10000]. The signal

is filtered through a lowpass filter B1 = −[500, 500] and a uniform set of

Nt = 1000 samples is taken from its lowpass version. (a) MSE of location

estimates obtained by the subspace method vs. MSE obtained using the an-

nihilating filter approach. In the latter case, we show the MSE for different

values of the filter order. (b) MSE of the annihilating filter approach vs.

the filter order, shown for two values of SNR. . . . . . . . . . . . . . . . 30

3.1 Approximation of the derivatives of a Gaussian kernel (a) Magni-

tude of the first three terms in the Taylor series expansion of H
(1)
σ (ω). (b)

First derivative Gaussian kernel and its approximated version. (c) Sec-

ond derivative Gaussian kernel and its approximation. (d) Third derivative

Gaussian kernel and its approximation. . . . . . . . . . . . . . . . . . . 43

3.2 Periodic nonuniform splines and piecewise polynomials (a) Noisy

nonuniform spline (SNR=27dB) of degree R = 1 and reconstructed sig-

nal. The signal is reconstructed with an error of MSE=0.0135. The error

is defined as MSE = E{(xest − x)2}/E{x2}, where xest and x denote re-

spectively, the estimated signal and the original signal in one period. (b)

Noisy piecewise linear signal (SNR=15dB) and reconstructed signal. MSE

of reconstruction is MSE=0.015. . . . . . . . . . . . . . . . . . . . . . 44

xi



xii LIST OF FIGURES

3.3 Aperiodic stream of Diracs: We consider a signal of length 1000, made

up of K weighted Diracs (K is varied between 2 and 12), and sampled with

the Gaussian kernel e−t2/2σ2
. Average spacing between the components is

assumed to be ts = 60. (a) MSE of position estimates vs. SNR, for K = 6,

σ = 35. The MSE of the original method (i.e. with no weighting of the

data matrix) is compared to the MSE obtained by the method from Section

3.3.1. (b) MSE of reconstruction vs. the width of the Gaussian kernel.

The error is plotted as a function of the parameter σ/ts (and is shown for

different values of SNR), indicating a sensitivity of the method to the choice

of the width σ. (c) MSE vs. σ/ts , for different values of K. (d) MSE vs.

number of Diracs K. For each value of K, we chose the optimal value of

the kernel width σ, that is, the one which minimizes a reconstruction error.

Dashed lines correspond to the MSE obtained by sampling the signal over

two smaller time windows and finding local reconstruction in each window. . 46
3.4 Aperiodic piecewise constant signal (a) Noisy piecewise constant signal

(SNR=25dB). (b) Gaussian kernel. (c) Filtered signal. (d) Noisy signal

and reconstructed piecewise constant signal. The signal is reconstructed from

N = 160 samples, with an error of MSE = 6 · 10−3. (e) Reconstruction

error vs. SNR for different number of samples. The error is defined as

MSE = E{(xest − x)2}/E{x2}. . . . . . . . . . . . . . . . . . . . . . 48
3.5 Model mismatch: unknown model order (a) The periodic signal made

up of 15 weighted Dirac pulses, with 8 pulses being dominant. (b) Recon-

structed dominant components. . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Model mismatch: unknown signal model (a) Piecewise polynomial

signal, noisy signal and the piecewise constant approximation. (b) Origi-

nal signal and reconstructed lowpass version using Shannon’s interpolation

formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Receiver block diagram . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Estimation from multiple bands: receiver block diagram . . . . . . 61
4.3 System model (a) The transmitted (single) UWB pulse is assumed to

have an ideal first-derivative Gaussian shape. We considered the channel

model (4.1), with six propagation paths and one dominant path (containing

70% of the total power). The received pulse is made up of six attenuated

and delayed replicas of the transmitted pulse. (b) A coded sequence of 127

UWB impulses (red) is periodically transmitted over multiple cycles, while

the sequence duration spans approximately 20% of the cycle time Tc. Coding

is achieved with a PN sequence of length 127, and the relative delay between

the transmitted pulses is 20 samples. The received signal (blue) is dominated

by noise. In this case, the received signal-to-noise ratio is SNR=-15dB. . . 67
4.4 Timing recovery in UWB systems (a) Root-mean square error (RMSE)

of delay estimation (in terms of number of samples) vs. SNR, for the case

with one dominant path. We compare performances of the SVD-based algo-

rithm and the Power method for several values of the sampling rate Ns. Nn

denotes the Nyquist rate. (b) RMSE of t-delay estimation (SNR=0dB) for

the annihilating filter and the SVD-based method, and this for different val-

ues of Q, which denotes the polynomial degree (annihilating filter method)

or the number of columns in the data matrix Ys (SVD-based method). N is

the total number of samples used for estimation. . . . . . . . . . . . . . 68



LIST OF FIGURES xiii

4.5 Timing recovery: the case with two dominant paths (a) RMSE of

delay estimation of the two dominant components vs. relative time delay

(i.e. peak-to-peak delay) between the pulses. We show the performance of

the original subspace algorithm (d = 1) and the modified (subspace-shifting)

algorithm from Section 4.1.3 (d = 8, 12, 16), assuming that Ns = Nn/5 and

SNR = −5dB. (b) RMSE of delay estimation vs. received SNR, and this

for the original algorithm (d = 1) and the subspace-shifting method (d =

8). The sampling rate is Ns = Nn/5, while the relative delay between the

dominant components equals the pulse duration. In both cases, we plot the

RMSE obtained with the SVD-based method and the method of Orthogonal

iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Two-step delay estimation (a) Coarse synchronization is obtained by

sampling the received signal uniformly (over the entire cycle) at a low rate

Nl = Nn/20. For low SNR’s (less than -5dB) the samples are averaged over

multiple cycles (dashed line). Once a rough estimate of the sequence timing

is obtained, fine synchronization follows: the signal is sampled only within a

narrow window, yet at a higher rate Nh = Nn/2. RMSE of time delay esti-

mation is compared to the RMSE obtained with high-rate uniform sampling

over the entire cycle. (b) RMSE of delay estimation for different combi-

nations of Nl (the sampling rate for coarse synchronization) and Nh (the

sampling rate for fine synchronization). Nc denotes the number of averag-

ing cycles during each phase, chosen such that the total power consumption

remains constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Estimation from non-adjacent bands (a) Normalized power spectral

density (PSD) of the received pulse and frequency bands used for estimation.

(b) The channel is estimated from bands B1 and B2 (no interference) and

the delay estimation performance is compared to the case when B1 and B3

are sampled (strong interference in B2). . . . . . . . . . . . . . . . . . . 72

4.8 Timing recovery in non-ideal channels (a) Received waveform (single

pulse, including multipaths) and transmitted pulse. (b) Normalized power

spectral density (PSD) of the received pulse and frequency bands used for

estimation. (c) Timing estimation performances of the SVD-based method

and the matched filter approach. The sampling rate for the SVD approach

is Ns = 0.1Nn (the band B1 is sampled), Ns = 0.2Nn (B1 and B2 are

sampled) and Ns = 0.3Nn (B2 and B3 are sampled), while for the matched

filter Ns = Nn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Higher-rank channel models (a) Received UWB signal made up of 70

pulses, with 8 components being dominant (containing approximately 85% of

the total power). (b) RMSE of delay estimation of the dominant components

vs. SNR.(c) Effects of quantization on the RMSE of delay estimation for

4-7 bit receiver architectures. The results are compared to the case when the

number of bits is nb = 32. The sampling rate is one fourth the Nyquist rate

(Ns = Nn/4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



xiv LIST OF FIGURES

4.10 Joint pulse shape and delay estimation (a) Received noisy signal (blue)

and the noiseless signal made up of three short pulses having different shapes

(red). (b) Estimated shape of the first pulse. (c) Estimated shape of the

second pulse. (d) Estimated shape of the third pulse. The received signal is

sampled at one fifth the Nyquist rate (Ns = Nn/5). We used a polynomial of

order R = 20 to approximate the DFT coefficients of the received signal. (e)

Estimated second pulse in the case when the sampling rate is increased to

Nn = Nn/3. No spectral extrapolation is used. (f) Estimated second pulse

from (e) using spectral extrapolation along with the exponential weighting of

the approximated DFT coefficients. . . . . . . . . . . . . . . . . . . . . 79

4.11 Channel estimation in CDMA systems Average timing synchroniza-

tion error (normalized to Tc) in the multiuser case vs. sampling rate. We

assumed a non-fading channel. The signature sequence is of length 511.

(d) Comparison of timing estimation errors in single-path and multipath

channels (3 received components of equal power). . . . . . . . . . . . . . 80

4.12 Channel estimation in CDMA systems - Joint angle and delay

estimation (a) Normalized angle and delay estimation errors vs. number

of sensors in the antenna array S. The signature sequence assigned to a

user is of length 511. (b) Normalized angle and delay estimation errors vs.

sampling rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Sampling Setup Analog signal g(x, y) is prefiltered with h(x, y) = ϕ(−x,−y)

(anti-aliasing step). The sampled signal is given by gs(p, q) =
∑

p,q∈Z
gf (x, y)δ(x−

p, y − q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 The Annihilating Filter Method. (a) Two-dimensional signal

made up of M = 9 weighted Diracs (b) 2-D sinc sampling kernel of band-

width [−Mω0, Mω0]×[−ω0, ω0] (c) Lowpass approximation obtained by con-

volving the signal with the sinc function (d) Reconstructed signal. . . . . . 96

5.3 The ACMP algorithm. (a) Signal made up of M = 9 weighted

Diracs that have common components along both directions (b) Sinc sam-

pling kernel of bandwidth [−Mω0, Mω0] × [−Mω0, Mω0] used in the algo-

rithm (c) Lowpass approximation of the signal. . . . . . . . . . . . . . . 97

5.4 Numerical Performance vs. Average Spacing of the Diracs.
The numerical behavior of the algorithms is tested for different values of the

average spacing (normalized to one period) of M Diracs in the set, as well

as for different values of M . (a) Average reconstruction error for the an-

nihilating filter algorithm (b) Average reconstruction error for the ACMP

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Model mismatch (a) Set of M = 8 weighted Diracs with K = 5 Diracs

being dominant, all having the same weights an = 10, while the rest have

weights an = 3. (b) Reconstructed signal. We assumed that the model

order is M = 5 and used the ACMP algorithm to reconstruct the signal.

Only the dominant components are extracted, with the reconstruction error

of RMSE=0.006. (c) Average reconstruction error for different values of

the ratio of amplitudes Adominant
Anon−dominant

as well as for different number of

non-dominant components in the set for the ACMP method . . . . . . . . 99



LIST OF FIGURES xv

5.6 Performance in the presence of noise. RMSE versus SNR
for different values of the oversampling factor. We consider the
signal made up of 8 Diracs with equal weights. The method was
tested for different values of SNR and different values of the band-
width of the sampling kernel Bs. . . . . . . . . . . . . . . . . . . 100

5.7 Set of Finite Lines. (a) Signal made up of two finite lines (b) Low-

pass approximation obtained by convolving the signal with the sinc kernel of

bandwidth [−4ω0, 4ω0] × [−ω0, ω0] (c) Reconstructed set of lines. . . . . . 101
5.8 Bilevel Polygon. (a) Bilevel pentagon. The signal has 2M = 10 de-

grees of freedom (b) Lowpass approximation obtained by convolving the sig-

nal with the sinc kernel of bandwidth [−2Mω0, 2Mω0]× [−ω0, ω0] (c) Polyg-

onal line reconstructed with the annihilating filter method and the original

polygonal line. (d) Polygonal line reconstructed with the state space method.

In this case the line is reconstructed with an RMSE of less than 10−4. . . . 102

6.1 Finite Set of 2-D Diracs. (a) Two-dimensional signal made up of

M = 17 weighted Diracs (b) Gaussian sampling kernel (c) Convolution of

the signal with the sampling kernel (d) Reconstructed signal with an RMSE

of less than 10−8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Numerical Precision vs. Width of the Gaussian Kernel. The sig-

nal from Figure 6.1(a) is sampled with the Gaussian kernel e
− x2+y2

2σ2 . The

parameter σ is varied between 0.03T and 25T , where T denotes the spacing

between adjacent samples. The reconstruction error is plotted as a function

of σ
T

, indicating a strong sensitivity to the choice of the width σ. . . . . . 106
6.3 Point spread function. (a) Two-dimensional signal made up of

M = 17 weighted Diracs, convolved with a Gaussian PSF. (d) Reconstructed

signal with an RMSE of less than 10−7. . . . . . . . . . . . . . . . . . 107
6.4 Performance of the 2-D Gaussian sampling scheme. RMSE of loca-

tion estimates versus SNR for different values of the oversampling factor.

We consider the signal made up of 8 Diracs with equal weights, randomly

distributed over [1, 100] × [1, 100], sampled with the 2-D Gaussian kernel,

with parameter σ = 7. The method was tested for different values of SNR

and different values of the oversampling factor. . . . . . . . . . . . . . . 108
6.5 Radon transform of the set of Diracs The projection of a

set of M weighted 2-D Diracs onto an arbitrary line is a stream
of at most M weighted 1-D Diracs. . . . . . . . . . . . . . . . . . 109

6.6 Reconstruction of the Set of 2-D Diracs. (a) 2-D signal
consisting of M = 3 weighted Diracs (b) Reconstruction of the
signal from projecting lines obtained by sampling the Radon trans-
form of the signal with a Gaussian kernel. Points where exactly
M + 1 = 4 lines intersect correspond to the Diracs in the set. . . 110

6.7 Bilevel polygon The projection of a bilevel polygon is a piecewise linear

signal. For the signal with M vertices, 2M sample values of the Radon

transform taken from each of its M + 1 different projections uniquely define

the signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.8 Reconstruction of a bilevel triangle. (a) Bilevel triangle

(b) Reconstructed (and original) boundary. The reconstructed
boundary is obtained by taking a set of filtered projections with a
Gaussian kernel along M + 1 = 4 different directions. . . . . . . 113





Chapter 1

Introduction

1.1 Motivation

Sampling theory treats a very fundamental problem, with so many practical
repercussions, that it lies at the core of signal processing and communications.
Sampling is all about representing a continuous-time signal x(t) by a discrete
set of values x[n], n ∈ Z. Often, in practice, instead of sampling the waveform
itself, one has access only to its filtered version. If x(t) is the original waveform,
its filtered version is given by y(t) = x(t) ∗ h̃(t), where h̃(t) = h(−t) is the
convolution kernel. Then, uniform sampling with a sampling interval Ts yields
samples y(nTs), which can be expressed as

y(nTs) =< x(t), h(t − nTs) >=
∫ ∞

−∞
x(t)h(t − nTs)dt. (1.1)

Now the key question that arises is the following. Under what conditions is the
original signal x(t) uniquely defined by its samples y(nTs)? The crucial result
was stated by Shannon in 1949, in the form of the following sampling theorem
[71] [72]:

Theorem 1. [Shannon’s Sampling Theorem] If x(t) is bandlimited to ωm, that
is, X(ω) = 0, |ω| > ωm, then x(t) is uniquely determined by its samples taken
at twice ωm or x(nπ/ωm).

The reconstruction formula that complements the sampling theorem is given by

x(t) =
∑
n∈Z

y(nTs)sinc(t/Ts − n), (1.2)

where the uniform samples of y(nTs) can be interpreted as coefficients of ba-
sis functions obtained by appropriate shifting and scaling of the sinc function
sinc(t) = sin(πt)/(πt).

While Shannon must get full credit for formalizing this result and realizing
its potential for communication theory and signal processing, equivalent forms
of the theorem had already appeared in the mathematical literature at the time,
in particular, in the work of Whittaker [91] and Kotel’nikov [36] [37]. Although
this result is very elegant and has proven to be extremely fruitful, there are two

1
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main problems associated with it. First, it is an idealization: real world signals
or images are rarely bandlimited. And secondly, the reconstruction formula
(1.2) is almost never used in practice, especially with images, due to the slow
decay of the sinc function [60]. Instead, most of the reconstruction methods
that are currently in use, rely on simpler techniques such as linear interpolation
[7] [8].

Recently, sampling theory has experienced a strong research revival, mainly
due to the intense activity taking place around wavelets, which led researchers
to reexamine some of the foundations of Shannon’s original theory and develop
more advanced formulations with immediate relevance to signal processing and
communications. For example, a modern, Hilbert-space formulation reinterprets
the standard sampling system as an orthogonal projection operator that com-
putes the minimum error bandlimited approximation of an input signal that is
not necessarily bandlimited. This concept also extends to the class of spline-like
or shift-invariant spaces, spanned by a generating function and its uniform shifts
[80]. That is, by replacing the sinc(t) function in (1.2) by a more general tem-
plate or the generating function ϕ(t), one can specify the basic approximation
space V as

V (ϕ) = {f(t) =
∑
n∈Z

c(n)ϕ(t − n)}. (1.3)

This means that any function f(t) ∈ V (ϕ) is characterized by a sequence of
coefficients c(n), that is, its discrete representation [80]. A direct consequence
of the above formulation is that signals that belong to the space V can be
perfectly reconstructed, which can be considered as a more abstract formulation
of Shannon’s theorem. However, this result cannot be extended to the general
case of non-bandlimited signals, and typically, only the projection of the signal
onto a specific subspace can be reconstructed.

In recent work by Vetterli, Marziliano and Blu [85], it was shown that it is
possible to develop exact sampling schemes for some classes of signals that are
neither bandlimited nor live on shift-invariant spaces, namely, certain signals
with finite rate of innovation. Examples include streams of Diracs, non-uniform
splines and piecewise polynomials. A common feature of such signals is that they
have a parametric representation with a finite number of degrees of freedom per
unit of time, or finite rate of innovation ρ, and can be perfectly reconstructed
from a set of samples taken at a rate R ≥ ρ, after appropriate smoothing. The
key in all constructions is to identify the innovative part of a signal, such as
time instants of Diracs, using an annihilating or locator filter, a well-known
tool from spectral analysis [74] or error correction coding [6]. This allows for
standard computational procedures for solving the sampling problem for a wide
class of non-bandlimited signals and leads to some interesting results.

The notion of “rate of innovation” can be also related to the classical Shan-
non bandwidth [54], which defines the dimension of the subspace (per unit of
time) that allows one to represent the space of signals of interest. For example, in
the case of bandpass signals, where the Nyquist rate can be very large, Shannon
bandwidth is the correct notion [20]. Still, there are some differences between
the two concepts. In systems that use pulse position modulation (PPM) [62],
Shannon bandwidth is proportional to the number of possible positions inside
a given interval, whereas the rate of innovation is fixed, and is related to the
number of degrees of freedom of the signal per interval.
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The above discussion indicates that one of the most promising applications
of the new sampling results can be found in communication systems with band-
width expansion, such as ultra-wideband (UWB) systems, where the bandwidth
used to transmit the information is much larger than the rate of information
being sent. UWB systems use trains of pulses of very short duration, typically
on the order of a nanosecond, thus spreading the signal energy over a bandwidth
of up to a few gigahertz. However, due to the extreme bandwidths involved, the
design of digital UWB receivers can be a very challenging task, as it would re-
quire very fast and expensive A/D converters (operating in the gigahertz range)
and thus lead to prohibitively high costs in terms of power consumption and re-
ceiver complexity. Yet the rate of innovation of a received UWB signal is related
to the symbol rate, which can be orders of magnitude lower than the Nyquist
rate. Thus, using the new sampling results, one can sample the received signal
at a rate that is lower than the Nyquist rate, and still be able to recover the
signal. Similar arguments can be used to sample a filtered stream of Diracs,
known as shot noise, which may be of interest not only to communications, but
to biological signal processing as well. For example, in neurophysiology, signals
are often modeled as shot noise, and one can expect to be able to recover the
signal by sampling it at a low rate.

One can even look further and try to generalize the results to multidimen-
sional signals, specifically to images, where the bandlimited property almost
never holds. In particular, one can consider classes of signals with “finite com-
plexity”, and develop sampling schemes that allow for perfect reconstruction
from a finite set of samples. Compared to existing multidimensional sampling
techniques, such an approach will provide a more elegant solution to the sam-
pling problem for some classes of parametric non-bandlimited signals, but would
also lead to an efficient representation for such signals. One possible application
can be found in super-resolution videogrammetry, where the position of 3-D
objects can be determined with a sub-pixel precision by locating some clearly
marked features, such as points or edges, using a set of low-resolution 2-D im-
ages taken from various angles. Other possible applications include astronomical
image processing, tomography, medical imaging and image compression.

These and similar problems suggest that the subject of sampling is far from
being closed and that its importance will most likely grow in the future with
the increasing trend to replace analog systems with digital ones.

1.2 Problem Statement

The discussion from the previous section presents a strong motivation for ad-
vancing the sampling theory for signals that belong to finite-dimensional non-
linear spaces, and more importantly, for exploring its possible applications. The
results outlined so far obviously raise a number of questions. What algorithms
can be used to reconstruct a signal from the set of its samples and are those
methods computationally feasible and stable? What other computational tools,
potentially more efficient than the annihilating filter, can be used to identify in-
novation? What are possible extensions of these results and practical problems
encountered in certain applications?

The first question was partially addressed in [85], since the authors consid-
ered only the class of deterministic noiseless signals. In such a case, the problem
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of numerical instability of the developed schemes was not an issue. However, the
potential problem with ill-conditioning in the presence of noise, along with other
problems we mentioned, calls for novel constructions that can be efficiently used
in practice. In particular, our aim in this thesis is following:

• Revisit the sampling problem for signals of finite rate of innovation and
develop improved sampling schemes that allow for stable and precise re-
construction in the presence of noise.

• Develop alternative computational tools that can extract relevant infor-
mation about the signal more efficiently and with higher precision.

• Explore applications of the new sampling results to communication prob-
lems.

• Extend the results to the two-dimensional case.

To provide more insight into the subject we studied, in the sequel, we briefly
explain the relevant problems related to each of these topics.

1.2.1 Sampling schemes in the presence of noise

In order to prove sampling theorems, Vetterli et al. considered only a class of
deterministic, noiseless signals. While in such a case the developed schemes
lead to perfect reconstruction by sampling the signal at (or above) the rate of
innovation, many of those methods involve steps that can result in numerical
ill-conditioning in the presence of noise. For example, it was shown that the
problem of reconstructing non-uniform splines can be reduced to the problem
of reconstructing streams of Diracs (which allows for an elegant mathematical
solution) by taking a sufficient number of signal derivatives. However, when
noise is present, such an approach often results in an ill-conditioned problem,
where standard techniques, including oversampling and solving various systems
using the singular value decomposition, are not sufficient for improving the
numerical performance. In the case of piecewise polynomials, the method from
[85] uses derivation as well, leading to a sum of derivatives of Diracs. In addition
to noise amplification, such an approach requires identification of multiple roots
of the annihilating filter, a task that is difficult even in the noiseless case. This
naturally calls for a revision of some of the techniques presented in [52] [85] and
development of alternative algebraic approaches and computational tools that
can solve the problem of ill-conditioning in the presence of noise and lead to
precise reconstruction.

1.2.2 Alternative computational tools and methods for reso-
lution improvement

The sampling methods developed [85] rely on identifying the innovative part of
a signal using an annihilating (or prediction) filter, where the exact information
about the discontinuities can be extracted from the zeros of the annihilating fil-
ter, modeled as an FIR filter. This converts a nonlinear estimation problem to
the linear parameter estimation problem of the polynomial model. The polyno-
mial realization of the estimator was first suggested by Prony in 1975 [63], and
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has received much attention in the spectral estimation literature. However, such
an approach has certain limitations. In particular, in order to reduce sensitivity
of the parameter estimates to noise, typically a high order polynomial must be
used [32], which imposes a significant computational burden since it is necessary
to find roots of a large size polynomial in order to extract a small number of
signal poles. In addition to increased computational requirements, overmod-
eling gives rise to spurious filter zeros, which can be incorrectly identified as
signal poles. We will thus develop an alternative, subspace algorithm for signal
reconstruction, based on state space modeling [65], which avoids root finding
and relies only on a proper deployment of matrix manipulations. We will show
that such an approach yields robust parameter estimates, not by overmodeling,
but by appropriately exploiting the algebraic structure of the signal subspace.

Another problem that we investigated in the context of model-based spectral
estimation is the possibility of improving the resolution performance in the case
when the signal contains closely spaced frequencies. This problem arises, for
example, in applications such as time delay estimation in multipath channels,
where both statistical analysis and practice have shown that the estimation
performance of parametric methods can degrade significantly if a received signal
has closely spaced components. It is thus of interest to explore techniques that
can improve the resolution capability of existing methods, without increasing
their computational complexity. Namely, since the performance of parametric
methods depends strongly on the eigenstructure of an associated data matrix,
the idea is to use alternative ways for constructing such a matrix from the same
data set. This can improve matrix conditioning and yield better estimation
accuracy.

1.2.3 Communication applications

One of the most interesting applications of the new sampling framework is in
certain classes of non-linear estimation problems in ultra-wideband communica-
tion systems. Ultra-wideband technology has recently received much attention
due to the benefits of an extremely wide transmission bandwidth, such as very
fine time resolution for accurate ranging and positioning and multipath fading
mitigation in indoor wireless networks [16] [25] [94]. The same properties that
make UWB a promising candidate for a variety of new applications also bring
new challenges to both the analysis and practice of reliable systems. One of the
main design challenges is rapid synchronization, as its accuracy and complex-
ity directly affect the system performance. In this context, it is of interest to
explore low-complexity methods for channel estimation and synchronization in
digital ultra-wideband receivers, which would yield high-resolution estimates of
all relevant channel parameters by sampling a received signal below the Nyquist
rate. Such an approach would allow for faster acquisition compared to proposed
digital solutions and potentially reduce power consumption and complexity of
digital UWB receivers significantly. In addition, it is of interest to develop algo-
rithms that are suitable for identification of more realistic UWB channel models,
where a received signal is made up of pulses with different pulse shapes.
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1.2.4 Extension to two-dimensions

The new sampling framework led to many interesting results for the 1-D case and
the next logical step was to generalize the concept to multidimensional signals.
Compared to existing multidimensional sampling techniques, such an approach
can provide a more elegant solution to the sampling problem for some classes
of parametric signals, and also lead to efficient representation for such signals.
However, the problem becomes more complex when going to higher dimensions
and does not necessarily allow for direct extensions of 1-D formulations. Still,
we will show that it is possible to develop exact sampling schemes and recon-
struction formulas for some classes of non-bandlimited signals, such as sets of
2-D Diracs, polygons or signals with piecewise polynomial boundaries. We will
focus on developing sampling schemes for signals with M degrees of freedom
that require on the order of M (or at most O(M2)) samples, and algorithms
that can recover such signals with high numerical precision, regardless of the
signal complexity (e.g. the value of the parameter M) or signal structure.

1.3 Related Work

Perhaps one of the most appealing aspects of the subject of this thesis is its
interdisciplinary nature. Topics that we cover range from sampling theory and
model-based signal analysis, to some system-design problems such as channel
estimation and synchronization in communication systems. These topics have
been traditionally studied by different communities, yet, we will take a signal
processing point of view and put the emphasis on developing practical algorith-
mic solutions.

1.3.1 Sampling theory and model-based signal analysis

The first part of the thesis is related to sampling theory for classes of non-
bandlimited signals with finite rate of innovation. In this context, this part
is a follow-up to the work of Vetterli, Marziliano and Blu [85] [52], where it
was shown that certain classes of such signals allow for uniform sampling after
appropriate smoothing and perfect reconstruction from a set of samples. In par-
ticular, the authors concentrated on noiseless, deterministic signals like streams
of Diracs, nonuniform splines and piecewise polynomials, and derived exact re-
construction formulas from a set of samples taken at the rate of innovation.
Some extensions of these results to other classes of signals, including piecewise
bandlimited signals, are presented in [52].

At this point, it is interesting to note that the concept of sampling “at the
rate of innovation” in not entirely new. In 1977, Papoulis introduced a powerful
generalization of Shannon’s sampling theory, showing that a bandlimited signal
can be perfectly reconstructed from the samples of the response of m linear
shift-invariant systems, sampled at 1/m-th of the Nyquist rate [59]. The basis
for this kind of formulation is that there are many different ways to extract
the information about the signal, provided that the number of measurements
is greater than or equal to the number of degrees of freedom of the signal.
Typical cases of generalized sampling are interlaced and derivative sampling [43]
[90]. Djokovic and Vaidyanathan applied similar ideas for the reconstruction of
functions in certain wavelet spaces [21]. A further step was taken by Unser and
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Zerubia, who generalized the concept to the reconstruction in shift-invariant
spaces V (ϕ), with no constraint on the input signal [79]. However, instead of
obtaining perfect reconstruction, which is not possible for signals that do not
belong to V (ϕ), they looked for an approximate solution that is consistent in
the sense that it yields the same measurements when reinjected in the system.

The sampling problem considered in [85] apparently differs from other prob-
lems in sampling theory in the following way: the space of signals which was
considered, and for which perfect reconstruction schemes were developed, is not
a shift-invariant vector space (e.g. the bandlimited space or spline spaces), but
rather a union of shift-invariant spaces of finite dimension [45]. As a result,
reconstruction methods rely on identifying the innovative part of a signal from
the set of samples obtained after appropriate smoothing. In particular, the
idea is to use algebraic transformations that convert the samples into a sum
of exponentials (complex or real), and reduce the problem of reconstructing
the unknown signal parameters into the classical spectral estimation problem,
that is, the problem of estimating the parameters of superimposed exponentials.
Such a problem is a prototype of a class of nonlinear estimation problems that
appear in a vast range of signal processing applications, including power spec-
trum estimation of a stochastic process, time delay estimation, direction finding
of a narrowband source, among others [58] [74] [65]. For these and closely re-
lated problems, model-based methods provide an elegant tool for exposing the
structure of an underlying signal [65] [74]. Such methods assume that the sig-
nal satisfies a generating model of known functional form, and then proceed in
estimating the parameters of the assumed model.

There are several classes of model-based estimation algorithms that have
received a considerable attention in the literature. In [65] [74], a polynomial re-
alization of the estimator is discussed, where the signal parameters are estimated
from zeros of the so-called prediction or annihilating filter. In [65], a state space
method is proposed, which provides an elegant and numerically robust tool for
parameter estimation using a subspace-based approach. The ESPRIT algorithm
is developed in [58], which can be viewed as a generalization of the state space
method applicable to general antenna arrays. In [33], several subspace tech-
niques for estimating generalized eigenvalues of matrix pencils are addressed,
such as Direct matrix pencil algorithm, Pro-ESPRIT and its improved version
TLS-ESPRIT.

Model-based techniques have been also extended to two-dimensional signals
and used in communication applications, for example in joint time delay and
angle of arrival estimation. However, the problem of estimating 2-D exponen-
tials is a much more involved task than in the case of 1-D signals, since it is
not generally separable. Among the earliest spectral estimation techniques that
addressed the non-separable case was the MEMP algorithm (Matrix Enhance-
ment and Matrix Pencil) [34]. The method introduces two so-called “enhanced
matrices”, from which the sets of frequencies in each dimension could be ob-
tained separately, yet an additional step is required to form the correct pairs
of 2-D frequencies. This often involves a costly minimization procedure, mak-
ing this algorithm unattractive due to its computational cost. In response to
that, there has been a lot of work toward developing high-resolution methods
that would link the estimation problems in both dimensions [28] [69] [81]-[84].
Among them are the ACMP algorithm (Algebraic Coupling of Matrix Pencils),
and the so-called 2-D ESPRIT [69].
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1.3.2 Two-dimensional sampling theory

Most of the work on two-dimensional sampling theory is related to bandlimited
signals. For instance, in [11], it was shown that Papoulis’ generalized sampling
theory can be extended to multidimensional bandlimited signals as well. While
the problem of image reconstruction from a regularly sampled data is relatively
straightforward, other types of sampling require more complex reconstruction
procedures. One such example is the problem of reconstructing a signal from
non-uniformly spaced samples, where the exact analysis becomes quite involved
[3]. A different approach, which arises in the tomographic imaging problem, is
concerned with sampling the Radon transform of the signal, rather than the
signal itself [9] [67]. Specifically, the idea is to reconstruct an image from a set
of its line-integral projections at different angles [18], and existing reconstruc-
tion methods are typically based on the so-called Fourier slice theorem [18] [55].
Such methods use interpolation in order to transform the Fourier projection
data from the polar to Cartesian grid, from which the reconstruction can be
obtained by an inverse FFT. Recently, Basu and Bresler proposed a fast re-
construction algorithm which can be considered as an improved version of the
standard “filtered backprojection” (FBP) algorithm, as it uses a hierarchical
decomposition of the backprojection operator [2]. However, all the algorithms
we mentioned are developed primarily for bandlimited signals and assume that
signal projections are available for a large number of directions.

Discrete tomography represents another whole area of research, which we
mention here only briefly to make the connection with some of the topics ad-
dressed in the thesis. For example, in [29], the authors consider the problem
of reconstructing plane figures from only two projections, and formulate the
necessary and sufficient conditions for a unique reconstruction. Namely, the
argument is based on the limit process from the reconstruction for the discrete
approximation by small squares. We should note that the discrete version of
this problem falls in the category of combinatorial theory, known as reconstruc-
tion of binary matrices, that is, the problem of finding a matrix with only two
entries, 0 and 1, given the number of non-zero elements in each row and each
column. As a result, all existing algorithms are iterative in nature and may
(or may not) converge to the exact solution. In this thesis, we will investigate
alternative, non-iterative reconstruction algorithms that allow for perfect recon-
struction from a finite number of projections and a finite number of samples in
each direction.

1.3.3 Applications to wideband communications

The use of subspace techniques for certain problems in wideband communication
systems, such as channel estimation in code division multiple access (CDMA)
systems has appeared in the literature [4] [23] [61] [78]. Yet almost all existing
methods solve for the desired parameters from a sample estimate of the covari-
ance matrix and resort to the Nyquist sampling rate (or even use fractional
sampling). Clearly, applying such techniques to ultra-wideband systems would
require sampling rates on the order of GHz and computational requirements
not affordable in most UWB applications. Similarly, conventional techniques
based on sliding correlators would require very fast and expensive A/D con-
verters (operating in the gigahertz range) and thus high power consumption.
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Besides, implementation of such techniques in digital systems would have al-
most unaffordable complexity in real systems as well as slow convergence time,
since one has to perform exhaustive search over thousands of fine bins, each at
the nanosecond level.

In order to improve the acquisition speed, several modified timing recovery
schemes have been proposed, such as a bit reversal search [30], or the correlator-
type approach which exploits properties of beacon sequences [25]. Even though
some of these methods have already been in use in certain analog UWB systems,
the need for very high sampling rates, along with the search-based nature of
these methods, makes them less attractive for digital implementation. Recently,
a family of blind synchronization techniques was developed [89], which takes
advantage of the so-called cyclostationarity of UWB signaling, that is, the fact
that every information symbol is made up of UWB pulses that are periodically
transmitted (one per frame) over multiple frames. While such an approach relies
on frame-rate rather than Nyquist rate sampling, it still requires large data sets
in order to achieve good synchronization performance.

Another challenge arises from the fact that the design of an optimal UWB re-
ceiver must take into account certain frequency-dependent effects on the received
waveform. That is, due to the broadband nature of UWB signals, the compo-
nents propagating along different paths typically undergo different frequency-
selective distortions [16] [94]. As a result, a received signal is made up of pulses
with different pulse shapes, which makes the problem of optimal receiver design
a much more delicate task than in other wideband systems [4] [61] [78]. In pre-
vious work [16], an array of sensors is used to spatially separate the multipath
components, which is then followed by identification of each path using an adap-
tive method, the so-called Sensor-CLEAN algorithm. Due to the complexity of
the method and the need for an antenna array, the method has been mainly
used for UWB propagation experiments. Thus, developing simpler and faster
algorithms for handling realistic channels which can be used in low-complexity
UWB transceivers is still an open problem.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, we begin with defining classes of
signals with finite rate of innovation and reviewing some basic sampling results
for such signals, developed in [85]. We analyze in detail a signal made up of a
periodic stream of Diracs, discuss some existing, and develop novel algorithmic
tools that will be used in all our subsequent constructions. While some of the
techniques we present, such as annihilating filters or subspace methods, have
been already encountered in spectral estimation framework, we further explore
preconditioning methods that lead to improved resolution performance in the
case when the signal contains closely spaced components. Finally, we present
performance analysis and show some simulation results.

In Chapter 3, we generalize the concept to more complex classes of periodic
and finite-length signals with finite rate of innovation. We revisit the problem
from [85] and propose improved, more robust methods that have better numeri-
cal conditioning in the presence of noise and yield more accurate reconstruction.
For classes of periodic signals, such as piecewise polynomials and nonuniform
splines, we propose novel algebraic approaches that solve the sampling problem
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in the Laplace domain, after appropriate windowing. Building on the results
for periodic signals, we extend our analysis to finite-length signals and develop
schemes based on a Gaussian kernel, which avoid the problem of ill-conditioning
by proper weighting of the data matrix.

In Chapter 4, we focus on applications of the new sampling framework to
certain nonlinear estimation problems encountered in wideband communication
systems. In particular, we consider the problem of low-complexity channel es-
timation and synchronization in digital ultra-wideband receivers. We develop a
frequency domain framework that yields high-resolution estimates of all relevant
channel parameters by sampling a received signal below the traditional Nyquist
rate. Our framework allows for faster acquisition compared to current digital
solutions and potentially reduces power consumption and complexity of digital
UWB receivers significantly. Furthermore, we show that it can be used for iden-
tification of more realistic channel models, where different propagation paths
undergo different frequency-selective mitigation. We also extend our results to
the case when the channel parameters are estimated from multiple frequency
bands with the highest signal-to-noise ratio, which allows one to maximize the
estimation performance, given a constraint on the acceptable sampling rate in
a system. Finally, we present a multiresolution version of our framework and
discuss its application to rapid acquisition in ultra-wideband localizers, showing
unique advantages over existing techniques in terms of complexity, acquisition
speed and power requirements.

In Chapter 5, we consider possible extensions of the new sampling results to
the two-dimensional case. We focus on classes of parametric non-bandlimited 2-
D signals that have a parametric representation with a finite number of degrees
of freedom. While there are many such parametric signals, it is often difficult to
propose practical sampling schemes, therefore, we concentrate on those classes
for which we are able to give exact sampling algorithms and reconstruction for-
mulas. We analyze in detail a periodic set of 2-D Diracs and extend the results
to more complex objects such as lines and polygons. Unlike most multidimen-
sional sampling schemes, the methods we propose perfectly reconstruct such
signals from a finite number of samples in the noiseless case. Similarly to the
1-D case, some of the techniques we use are already encountered in the con-
text of high-resolution harmonic retrieval. In particular, SVD-based methods
and the annihilating filter approach are both explored as inherent parts of the
developed algorithms.

In Chapter 6, we consider the problem of sampling aperiodic signals of finite
complexity using a Gaussian sampling kernel. We also propose an alternative
approach, which exploits the properties of a signal in the Radon transform do-
main. In particular, we show that by taking a finite number of “filtered” line
integrals, the problem can be reduced to its one-dimensional equivalent, which
is more convenient for algorithmic implementation. Such an approach allows
us to develop exact sampling results for 2-D Diracs, polygons or signals with
polynomial boundaries. That is, we demonstrate that by using an appropriate
sampling kernel, one can perfectly reconstruct the signal from a finite set of
samples of its Radon transform, which reduces the computational load com-
pared to “true” two-dimensional schemes and allows for simpler reconstruction
algorithms.

Finally, we conclude in Chapter 7 with a summary of our work and an
outlook on future research.



Chapter 2

Fundamentals of Sampling
Theory for Signals with Finite
Rate of Innovation

In this chapter, we present some key sampling results for signals with finite
rate of innovation and establish the mathematical framework that will be used
as a basis in all subsequent developments. We review some of the techniques
presented in [85], and develop alternative mathematical tools for solving the
sampling problem, which allow for simpler reconstruction and better numerical
performance in the presence of noise.

Some of the techniques we will be using are already encountered in the
context of parametric spectral estimation [33] [58] [74] and model-based signal
analysis [65]. In particular, we use algebraic methods that reduce a set of sam-
ples into a sum of exponentials, thus, the reconstruction problem can be broadly
considered as the one of estimating the parameters of superimposed exponen-
tials. This problem has been studied extensively in the literature and several
classes of high-resolution or subspace methods have been already developed [65]
[58] [74]. We focus on state space parameterization of a signal subspace [65],
which allows us to use high-resolution techniques based on eigendecomposition
of certain well-conditioned matrices [33] [65].

The outline of this chapter is as follows. In Section 2.1, we review classes
of signals of finite rate of innovation that will be treated in the sequel. In Sec-
tion 2.2, we consider the problem of sampling a periodic continuous-time signal
made up of a stream of Diracs. Although this signal has a relatively simple
parametric representation, it provides a basis for all the constructions that will
be discussed later. In particular, we present a frequency domain formulation
of the sampling problem and review the annihilating filter approach from [85].
In Section 2.3.1, we develop a new frequency domain framework that relies on
subspace parameter estimation [65], and prove a relation between the subspace
approach and the polynomial realization of the estimator [33] [85]. In Section
2.4, we present a brief analysis of the numerical performance of the subspace
estimator and give exact performance bounds in some simple cases. In Section
2.5, we discuss techniques for improving the resolution performance in the case
of closely spaced components, without increasing the computational complexity

11
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of the method. We also propose an improved version of the subspace method,
which uses an appropriate “enhanced” data matrix and allows for better esti-
mation performance. In Section 2.6, we show simulation results that illustrate
the numerical performances of the proposed techniques, and finally, in Section
2.7, we conclude with a summary of our results.

2.1 Signals with Finite Rate of Innovation

A class of signals with finite rate of innovation can be informally defined as a
class of parametric signals having a finite number of degrees of freedom per unit
of time, or finite rate of innovation [52] [85]. For example, consider a known
function ϕ(t) and signals of the form

x(t) =
∑
n∈Z

cnϕ(
t − nTs

Ts
). (2.1)

It is clear that the only degrees of freedom in x(t) are the coefficients cn, thus,
the rate of innovation is ρ = 1/Ts. There are many examples of such signals:
e.g. ϕ(t) can be a scaling function in a wavelet multiresolution framework [46]
[87], or when ϕ(t) = sinc(t), we obtain the class of bandlimited signals. In the
case of bandlimited signals, it is well-known that this rate corresponds to the
minimum sampling rate that allows perfect reconstruction in the noiseless case.
However, as we will see in the following, this will hold not only for bandlimited
signals, but for other classes of signals as well.

A more general case appears when we allow arbitrary shifts tn, that is,

x(t) =
∑
n∈Z

cnϕ(
t − tn

Ts
). (2.2)

For example, when cn = 1, ϕ(t) = δ(t) and tn − tn−1 are i.i.d. random variables
with exponential density, we have the Poisson process of rate 1/T . Furthermore,
by allowing a set of known functions {ϕr(t)}r=0,...,R and arbitrary shifts, we
obtain

x(t) =
∑
n∈Z

R∑
r=0

cnrϕr(
t − tn

Ts
). (2.3)

Clearly, in this case, the only degrees of freedom are the time instants tn and the
coefficients cnr. By introducing a counting function Cx(t1, t2) that counts the
number of degrees of freedom of x(t) in the interval [t1, t2], the rate of innovation
can be defined as

ρ = lim
τ→∞

1
τ

Cx(−τ

2
,
τ

2
). (2.4)

Thus, we have the following definition [85]:

Definition 1: A signal with a finite rate of innovation is a signal whose paramet-
ric representation is given by (2.2) or (2.3), and which has a finite ρ, as defined
in (2.4).

The reason for introducing the rate of innovation ρ is that one can expect to
relate it to the minimum sampling rate that allows perfect reconstruction in the
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absence of noise. We know that this is true in the case of bandlimited signals,
however, it turns out to be true for more general classes of signals given by (2.2)
and (2.3), as we will show in the sequel.

2.2 Periodic Stream of Diracs: Continuous-Time
Case

In this section, we consider the problem of sampling and reconstructing a pe-
riodic stream of weighted Diracs. We will show that in the absence of noise,
this signal can be reconstructed uniquely from its projection onto a subspace
of dimension that is greater than or equal to the number of degrees of free-
dom of the signal. We will consider a lowpass approximation of the signal,
which is one possible choice of the subspace, and present two high-resolution
frequency domain methods for signal reconstruction from its lowpass version.
One is a polynomial method, which uses the concept of annihilating filters [74]
and requires polynomial rooting to obtain parameters of interest. The other is a
subspace-based method, which allows for a more robust parameterization using
the state space approach [65].

2.2.1 Frequency domain formulation

Consider a periodic signal x(t) of period T , given by a sum of weighted Diracs,

x(t) =
∑

n

K−1∑
k=0

ckδ(t − tk − nT ), (2.5)

where 0 ≤ tk < T and tk �= tl, for k �= l. This signal is not bandlimited,
however, note that x(t) has only 2K degrees of freedom, that is, time delays
{tk}K−1

k=0 and weighting coefficients {ck}K−1
k=0 . Therefore, it seems intuitive that

by taking only 2K measurements of the signal, one can perfectly estimate all
the unknown parameters. In [85], it was proved to be possible, provided that
the signal is first filtered with an appropriate filter. For example, one can use
an ideal lowpass filter of minimum bandwidth B, where B is greater than or
equal to the rate of innovation ρ. In order to show how this can be achieved,
consider the frequency domain representation of the signal.

Since x(t) is periodic, it can be represented through its Fourier series

x(t) =
∞∑

m=−∞
X [m]ejmω0t, where ω0 = 2π/T. (2.6)

The Fourier series coefficients X [m] are given by

X [m] =
1
T

∫ T

0

x(t)e−jmω0tdt =
1
T

∫ T

0

K−1∑
k=0

ckδ(t − tk)e−jmω0tdt

=
1
T

K−1∑
k=0

ck

∫ T

0

δ(t − tk)e−jmω0t =
1
T

K−1∑
k=0

cke−jmω0tk

=
1
T

K−1∑
k=0

ckzm
k . (2.7)
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Note that the coefficients X [m] are given by a sum of K complex exponentials
zm

k = e−jmω0tk , where zk are usually referred to as signal poles [65] [74]. There-
fore, if one has access to Nt ≥ 2K adjacent Fourier series coefficients of the
signal, the problem of estimating the parameters {tk}K−1

k=0 and {ck}K−1
k=0 can be

reduced to the classical harmonic retrieval problem, well-studied in spectral esti-
mation [74] and model-based signal analysis [65]. In [85], the signal parameters
are estimated from the Fourier series coefficients corresponding to the lowpass
approximation of the signal, using the method based on annihilating filters,
which belongs to the class of high-resolution parametric methods for harmonic
retrieval [74]. In the following, we give an overview of the method, while a more
detailed discussion can be found in [65] [74] [85].

2.2.2 Annihilating filter method

The annihilating filter approach exploits the fact that in the absence of noise,
each exponential {e−jnω0tk}n∈Z can be “nulled out” or annihilated by a first
order FIR filter Hk(z) = (1 − e−jω0tkz−1), that is,

e−jnω0tk ∗ [1,−e−jω0tk ] = 0.

Consider thus a K-th order FIR filter H(z) =
∑K

m=0 H [m]z−m, having K zeros
at zk = e−jω0tk ,

H(z) =
K∏

k=1

(1 − e−jω0tkz−1) =
K∑

m=0

H [m]z−m. (2.8)

Note that H(z) is the convolution of K elementary filters with coefficients
[1,−e−jω0tk ], l = 1, ..., K. Since X [n] is the sum of complex exponentials,
each will be annihilated by one of the roots of H(z), thus we have

(H ∗ X)[n] =
K∑

k=0

H [k]X [n − k] = 0, for n ∈ Z. (2.9)

Assuming without loss of generality that H [0] = 1, at critical sampling (2.9)
becomes

K∑
m=1

H [m]X [n− m] = −X [n], n = 1, ..., K. (2.10)

Once the filter coefficients H [m] have been found, the information about the
time delays tk can be extracted from the roots of the filter H(z). The corre-
sponding weighting coefficients ck are then estimated by solving the system of
linear equations (2.7).

From the above analysis, it becomes clear that in order to find K filter
coefficients H [m], m = 1, ..., K from (2.10), one requires 2K Fourier series
coefficients X [m], where m ∈ [−K + 1, K]. Therefore, in the following, we
show how to obtain these coefficients from a set of Nt ≥ 2K uniform samples
of the lowpass version. Assume that the signal x(t) is sampled with a sinc
sampling kernel ϕ(t) of bandwidth [−Kω0, Kω0], and that the sampling period
Ts is chosen such that Nt = T/Ts ≥ 2K + 1 with Nt ∈ N. The sample values
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yn =< ϕ(t − nTs), x(t) > are then given by

yn = < ϕ(t − nTs),
∑
m

X [m]ejmω0t >

=
∑
m

X [m] < ϕ(t − nTs), ejmω0t >

=
∑
m

X [m]Φ(mω0)ejmω0nTs

=
∑
m

X [m]ejmω0nTs , (2.11)

where Φ(ω) is the Fourier transform of ϕ(t), which satisfies

Φ(ω) =
{

1, |ω| ≤ Kω0,
0, otherwise. (2.12)

If the sampling period satisfies the above requirement, this system of equations is
invertible and will yield a unique solution for X [m], m ∈ [−K, K]. In particular,
when Nt = 2K+1, {yn}Nt

n=1 represent the inverse discrete-time Fourier transform
of X [m].

The algorithm can be thus summarized as follows:

Outline of the annihilating filter algorithm

1. Compute the set of at least 2K Fourier series coefficients X [m] from a set
of Nt ≥ 2K + 1 uniform samples yn =< ϕ(t − nTs), x(t) > .

2. Find the coefficients H [k] of the annihilating filter

H(z) =
K∏

k=1

(1 − e−jω0tkz−1) =
K∑

k=0

H [k]z−k, (2.13)

which satisfies (2.9), that is,

(H ∗ X)[n] = 0, for n ∈ Z.

By setting H [0] = 1, at critical sampling (2.9) becomes⎛⎜⎜⎜⎝
X[0] X[−1] · · · X[−K + 1]
X[1] X[0] · · · X[−K + 2]

...
...

. . .

X[K − 1] X[K − 2] · · · X[0]

⎞⎟⎟⎟⎠ ·

⎛⎜⎝ H [1]
...

H [K]

⎞⎟⎠ = −

⎛⎜⎜⎜⎝
X[1]
X[2]

...
X[K]

⎞⎟⎟⎟⎠ .

(2.14)

This system of equations is usually referred to as a high-order Yule-Walker
system [74].

3. Find the values of tk by finding the roots of H(z).
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4. Solve for the coefficients ck by solving the system of linear equations in
(2.7), that is:⎛⎜⎜⎝

X [0]
X [1]

...
X [K − 1]

⎞⎟⎟⎠ =
1
T

⎛⎜⎜⎝
1 1 . . . 1
z0 z1 . . . zK−1

...
... . . .

...
zK−1
0 zK−1

0 . . . zK−1
0

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
c0

c1
...

cK−1

⎞⎟⎟⎠ . (2.15)

This is a Vandermonde system, which has a unique solution since the tk’s
are assumed to be distinct.

We have seen that in the absence of noise, it suffices to use only 2K adjacent
Fourier series coefficients X [m] to obtain perfect estimates of all the unknown
parameters. While in the noiseless case the critically sampled scheme leads
to perfect estimates of all the parameters, in the presence of noise, such an
approach can suffer from poor numerical performance. In particular, any least-
square procedure that determines the filter coefficients directly from (2.14) has
poor numerical precision. In practice, this problem can be dealt with by over-
sampling and using standard techniques from noisy spectral estimation, such
as the singular value decomposition (SVD). That is, one should consider an
extended system of equations (2.14)⎛⎜⎜⎝

X[0] X[−1] · · · X[−K + 1]
X[1] X[0] · · · X[−K + 2]

...
...

. . .

X[K1 − 1] X[K1 − 2] · · · X[K1 − K]

⎞⎟⎟⎠ ·
⎛⎝ H [1]

...
H [K]

⎞⎠ = −

⎛⎜⎜⎝
X[1]
X[2]

...
X[K1]

⎞⎟⎟⎠
⇐⇒ Y · h = −X, (2.16)

where K1 > K, and find the singular value decomposition of the matrix X

X = UsSsVs
H + UnSnVn

H . (2.17)

The first term corresponds to the best (in the Frobenius-norm sense) rank K
approximation of the matrix X. The filter coefficients h are then computed as

h = −VsSs
−1Us

H · X. (2.18)

However, even though such an approach improves numerical accuracy on the
estimates of the filter coefficients, it is not sufficient for good overall performance
of the algorithm. Specifically, both theoretical analysis and practice have shown
that in order to reduce sensitivity of time-delay estimates to noise, the filter
order should be chosen according to the length of the data set, rather than
the number of unknown signal components [32] [49]. That is, even though the
number of components may be relatively low, typically, a high-order filter must
be used, which imposes a significant computational burden since it is necessary
to find roots of a large size polynomial in order to extract a small number of
signal poles [65].

This brings us to a more practical version of the model-based approach,
the so-called subspace estimator, which avoids the root finding step and relies
only on some matrix factorizations. It takes advantage of the so-called shift-
invariant subspace property and leads to robust estimates without overmodeling,
by properly exploiting the algebraic structure of the signal subspace [32] [65].
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2.3 Subspace-Based Approach

2.3.1 Subspace solution based on the shift-invariance property

Consider the set of Fourier series coefficients X [m], given by (2.7), and construct
a Hankel1 data matrix X of size M × N , where M, N > K,

X =

⎛⎜⎜⎝
X [0] X [1] . . . X [N − 1]
X [1] X [2] . . . X [N ]

...
X [M − 1] X [M ] . . . X [M + N − 2]

⎞⎟⎟⎠ . (2.19)

For simplicity, we have constructed the data matrix using only the coefficients
X [m] with non-negative indices m. In Section 2.5.2, we will show that the
method can be directly extended to the case when the coefficients with negative
indices are used as well.

Note that in the absence of noise, X can be decomposed as X = USVH ,
where U and V are Vandermonde matrices given by

U =

⎛⎜⎜⎝
1 1 1 . . . 1
z0 z1 z2 . . . zK−1

...
zM−1
0 zM−1

1 zM−1
2 . . . zM−1

K−1

⎞⎟⎟⎠ , (2.20)

V =

⎛⎜⎜⎜⎝
1 1 1 . . . 1
z∗0 z∗1 z∗2 . . . z∗K−1

...
z∗0

N−1 z∗1
N−1 z∗2

N−1 . . . z∗K−1
N−1

⎞⎟⎟⎟⎠ , (2.21)

while S is a diagonal matrix

S = diag ( c0 c1 c2 . . . cK−1 ) . (2.22)

At this point, it is important to note that the above factorization is not unique.
That is, if X = USVH , then X = UP · P−1SQ ·Q−1VH is another possible
factorization, for every choice of K × K non-singular matrices P and Q. How-
ever, as we will show in the following, any such factorization can be used to
estimate the signal parameters.

Consider first the matrix U, given by (2.20). Since U has a Vandermonde
structure, it can be written in the following, more compact form:

U =

⎛⎜⎜⎜⎜⎝
b
b ·Φ
b ·Φ2

...
b ·ΦM−1

⎞⎟⎟⎟⎟⎠ , (2.23)

where b is a row vector of length K, given by b = [1 1 ... 1], while Φ is a
K × K diagonal matrix containing the signal poles on the main diagonal, i.e.

1A Hankel matrix is a matrix in which the (i, j)-th entry depends only on the sum i + j.
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Φ = diag(zk). Similarly, due to the Vandermonde structure of the matrix V
(2.21), it can be written as

V =

⎛⎜⎜⎜⎜⎜⎝
b
b · Φh

b · Φ2
h

...
b · ΦN−1

h

⎞⎟⎟⎟⎟⎟⎠ , (2.24)

where Φh = ΦH .
The subspace approach takes advantage of two properties of the data matrix

X. The first property is that in the case of noiseless data, X has rank K. This
will allow us to reduce the noise level by approximating the noisy data matrix
with a rank K matrix. The second property is the so-called shift-invariant
subspace property. That is, if we consider the matrices U and V, given by
(2.20) and (2.21), they satisfy the following relations:

U = U · Φ and V = V · ΦH , (2.25)

where (·) and (·) denote the operations of omitting the first and the last row of
(·) respectively, while Φ is a diagonal matrix having the signal poles zk’s on the
main diagonal. Note that the shift-invariance property is satisfied not only by
U and V, but also by all matrices UP and VQ, where, as already mentioned,
P and Q are any non-singular K ×K matrices. In order to prove this property,
consider, for example, the matrix UP. This matrix can be expressed as

UP =

⎛⎜⎜⎜⎜⎝
bP
bP · P−1ΦP
bP · P−1Φ2P
...
bP · P−1ΦM−1P

⎞⎟⎟⎟⎟⎠ , (2.26)

where we have inserted PP−1 between b and Φk, k = 0, ..., M − 1. Given
that (P−1ΦP)k = P−1ΦkP, it becomes obvious that UP satisfies the shift-
invariance property as well, that is,

UP = UP · P−1ΦP. (2.27)

Since the matrix P−1ΦP in (2.27) is related to Φ by a similarity transformation,
it has the same eigenvalues as Φ, i.e. {zk}K−1

k=0 . Similarly, it can be proved that
the matrix VQ, where Q is any K × K non-singular matrix, will satisfy the
following relation:

VQ = VQ · Q−1ΦhQ. (2.28)

In practice, the data matrix X will be decomposed using the SVD as

X = UsSsVs
H + UnSnVn

H , (2.29)

where the columns of Us and Vs are K principal left and right singular vectors of
X respectively, while the second term contains remaining non-principals. Since
the presence of additive white noise has little effect on the principal singular
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vectors2, the singular vectors Us and Vs, corresponding to the K dominant
singular values, will be good estimates of the singular vectors of the original,
noiseless matrix X. Since both Us and Vs are matrices of rank K (as well as
U and V in (2.20) and (2.21)), there will exist K × K non-singular matrices
Q and R such that Us = U · Q and Vs = V · R. As a result, both matrices
Us and Vs will satisfy the shift-invariance property, and therefore, the time
instants of Diracs {tk}K−1

k=0 can be uniquely determined from the eigenvalues λk

of an operator that maps Us onto Us (or Vs onto Vs), that is,

tk = −T∠λk

2π
. (2.30)

At this point, it is important to note that when the signal poles are estimated
from the left singular vectors Us, the minimum required size of the data matrix
X in the noiseless case is (K +1)×K. Alternatively, if the right singular vectors
Vs are used for estimation, the minimum size of X is K × (K + 1). Once the
signal poles have been estimated, the weighting coefficients ck can be found as
a least-squares solution to (2.7). In the following, we give a summary of the
algorithm.

Subspace-based algorithm

1. Given a set of the Fourier series coefficients X [m], construct an M × N
matrix data X as in (2.19), where M, N > K.

2. Compute the singular value decomposition of X, that is, X = USVH .
Find the principal left and right singular vectors, Us and Vs, as the
singular vectors corresponding to the K largest singular values of X.

3. Estimate the signal poles zk = e−jω0tk by computing the eigenvalues of a
matrix Z, defined as

Z = Us
+ · Us. (2.31)

Note that if Vs is used in (2.31), one would estimate complex conjugates
of zk’s, since in the singular value decomposition of X, Vs is used with
the Hermitian transpose.

4. Find the coefficients ck as a least-squares solution to the Vandermonde
system (2.7), that is,

X [m] =
K−1∑
k=0

cke−jnω0tk + N [m].

The method can be further modified to improve its numerical performance,
specifically in the low SNR regime. For example, since in the noiseless case Us

and Us span the same column space, we can extract K principal components
from Us and Us by computing the joint SVD

[Us,Us] = UsSs[Vs1
H ,Vs2

H ]. (2.32)

2This is true under the assumption that the smallest singular value corresponding to the
signal is not dominated by noise.
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The signal poles zk = e−jω0tk are then estimated from generalized eigenvalues of
a K ×K matrix pencil Vs1 − zUs2 [33]. While this approach typically leads to
better estimation accuracy than the original state space algorithm, it requires
that the SVD of the two matrices X and [Us,Us] is computed.

2.3.2 Relation between the subspace and the polynomial esti-
mator

In the above case, where the coefficients X [m] are given by a linear combination
of exponentials, it is possible to find a decomposition of the matrix X = USVH ,
where both U and V are Vandermonde matrices. This allowed us to exploit
the shift-invariance property (2.25), and estimate the signal poles as the eigen-
values of the operator Z that maps one signal subspace onto another, “shifted”
subspace. However, in the case when the coefficients X [m] have more complex
structure (e.g. in the case of piecewise polynomial signals), finding an exact
algebraic expression for matrices obtained by any such decomposition becomes
much more involved task, whereas the polynomial parameterization may still
allow for an intuitive and relatively simple solution. Therefore, in this section,
we prove a general relation between the annihilating filter approach [85] and the
subspace estimator, which will allow us to extend the subspace method to other
classes of signals. To avoid any confusion about notation, in the following, low-
ercase bold and uppercase bold will denote respectively, a column/row vector
and a matrix.

Given a set of Fourier series coefficients X [n], we first define the state vector
[65] of length K as:

x[n] = (X [n − 1] X [n− 2] X [n − 3] · · · X [n − K] )T
. (2.33)

From the system (2.10), one can see that each coefficient X [n] can be predicted
from its K past values, thus we can write,

X [n] = (−H [1] −H [2] −H [3] · · · −H [K] )x[n] ⇔ X [n] = h x[n]. (2.34)

Combining (2.33) and (2.34), we obtain:⎛⎜⎜⎜⎜⎝
X [n]

X [n − 1]
X [n − 2]

...
X [n − K + 1]

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−H [1] −H [2] −H [3] · · · −H [K]

1 0 0 · · · 0
0 1 0 · · · 0
...
0 0 · · · 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

X [n − 1]
X [n − 2]
X [n − 3]

...
X [n− K]

⎞⎟⎟⎟⎟⎠ ,

(2.35)
or in matrix form

x[n + 1] = H x[n]. (2.36)

Therefore, the state space representation of the polynomial estimator is given
by

X [n] = h x[n], (2.37)

x[n + 1] = H x[n]. (2.38)

Starting with (2.37) and (2.38), we can write:

X [n] = h Hn x[0]. (2.39)
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Now let us show how the above relations can be used to find a subspace-based
solution to the estimation problem. Similarly to the approach from Section
2.3.1, one should first construct a Hankel data matrix X as in (2.19), of size
M × N , where M, N ≥ K. Using (2.38) and (2.39), the matrix X in (2.19) can
be factored as follows:

X =

⎛⎜⎜⎜⎜⎝
h

h H
h H2

...
h HM−1

⎞⎟⎟⎟⎟⎠ (x[0] H x[0] H2 x[0] · · · HN−1 x[0] ) ⇔ LRT . (2.40)

Thus, one can think of H as being an operator that maps L onto L (or, alterna-
tively, R onto R). Now the key is to observe that the characteristic polynomial
of H is given by

det(λI − H) = λK +
K∑

i=1

H [i]λK−i. (2.41)

By comparing (2.41) with an expression for the annihilating filter (2.8), that
is, H(z) = 1 +

∑K
m=1 H [m]z−m, it follows that the eigenvalues of the operator

H (i.e. the zeros of its characteristic polynomial) are identical to the zeros
of the annihilating filter. Note that this relation holds in the general case and
allows one to obtain the subspace estimator once the annihilating filter has been
determined, and vice versa. As already discussed in Section 2.3.1, there will be
no difference whether H is obtained from the matrix L in (2.40), or from another
matrix LQ, where Q is any non-singular matrix. The corresponding estimates of
H are related by similarity transformation and thus have the same eigenvalues.
This property also holds in the case when H is computed from the matrix R
or, alternatively, QR. In practice, since the matrix X will be decomposed using
the singular value decomposition as X = UsSsVH

s + UnSnVH
n , with the first

term corresponding to the principal components, the operator H can be found
either from the matrix Us or from the matrix Vs. This leads us to the following
proposition.

Proposition 2.1: Consider a Hankel matrix X with entries X [m] (2.19), and
let X = UsSsVH

s +UnSnVH
n denote its singular value decomposition. Assume

next that X [m] can be annihilated by an FIR filter H(z) =
∑K

k=0 H [m]z−m,
that is, (H ∗ X)[m] =

∑K
k=0 H [k]X [m − k] = 0, ∀m ∈ Z, where K is chosen

such that H(z) is of minimum order. Then, in the noiseless case, the roots of
the filter H(z) are identical to the eigenvalues of a matrix H = Us

+ · Us.

2.4 Performance Evaluation

The statistical properties of the estimates obtained using high-resolution meth-
ods have been studied extensively, mainly in the context of estimating the fre-
quencies of superimposed complex sinusoids from noisy measurements [32] [33]
[66] [65]. Expressions for the mean square error (MSE) of the frequency esti-
mates [32] indicate that the numerical performance of such methods is very close
to the Cramer-Rao bound [77], which represents the lowest achievable MSE by
any unbiased estimator. In the following, we present some of the key ideas used
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in the statistical analysis of the state space approach, while more on this topic
can be found in [32] [65].

Consider the data matrix X and denote by Rc = XXH the correspond-
ing covariance matrix. We will analyze the subspace approach which uses the
eigendecomposition of the covariance matrix Rc. However, note that the same
analysis applies to our method, based on the singular value decomposition of
the matrix X, since the left singular vectors (Us) of X are the eigenvectors of
R, that is, Rc = UsSsUs

H . Let Ũs = Us + 
Us, where 
Us is the error
in the eigenvectors corresponding to the signal subspace. Then, 
Us can be
written as 
Us = Ps
Us + Pn
Us, where Ps = UsUs

H is the unique or-
thogonal projection matrix onto the signal subspace, that is, if x belongs to
the signal subspace, then Psx = x. Similarly, Pn = I − Ps is a projection
operator onto the noise subspace. Now the key is to observe that only Pn
Us

contributes to the error in the eigenvalue estimates [65], which simplifies the
analysis considerably.

The first step in the analysis is to relate 
Rc, the error in the covariance
matrix, to Pn
Us,

Pn
Us = Pn
RcUsSs
−1. (2.42)

Next, we consider how Pn
Us affects Hs = Us
+Us as well as its eigenvalues.

By denoting H̃s = Hs + 
Hs, it can be shown [65] that


Hs = −Us
+(
UsHs −
Us), (2.43)

while the error in Hs can be related to the error of its eigenvalue zk through
the following relation:


zk = pk
Hsqk, (2.44)

where pk and qk are left and right eigenvectors of Hs corresponding to the
eigenvalue zk. Finally, by combining (2.42)-(2.44), we obtain:


zk = −zkεH
k 
RcUsSs

−1qk, (2.45)

where εH
k = −pkUs

+(W1 − z∗kW2), with W1 = [I(K−1)×(K−1), 0] and W2 =
[0, I(K−1)×(K−1)].

Therefore, starting from (2.45) and using the statistics of 
Rc, one can
compute the mean-square-error (MSE) of 
zk. However, due to the complex
dependency of 
Rc on the data, the general expressions are quite involved.
Therefore, we give simplified expressions for the MSE of the frequency estimate
in the case of a single exponential, which in our framework corresponds to the
estimate of the time delay t1 of one Dirac impulse.

Consider for simplicity the case of a periodic signal with period T . Let
the data matrix X be of size M × N , and let Nt = M + N − 1 be the total
number of samples used for estimation. Assuming that the signal and noise
are uncorrelated, the optimum performance is achieved when N = Nt/3 or
N = 2Nt/3, resulting in the MSE of time delay estimation [32]:

E{∆t21} ≈ 1
ω2

0

27
4N3

t

1
SNR

. (2.46)

where ω0 = 2π/T . This is close to the Cramer-Rao bound (CRB) [77], given by

CRB =
1
ω2

0

6
N3

t

1
SNR

. (2.47)
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which indicates desirable numerical performances of the subspace-based ap-
proach.

Similar performance can be obtained with the annihilating filter method [32],
where the minimum MSE is given by

E{∆t21} ≈ 1
ω2

0

9
N3

t

1
SNR

, (2.48)

The minimum MSE is achieved for N = Nt/3 or N = 2Nt/3 as well, however,
in this case, N corresponds to the polynomial degree. As we alluded to earlier,
a choice of the polynomial degree directly affects the estimation performance.

2.5 Extensions of the Subspace Methods

2.5.1 Estimation of closely spaced Diracs: increasing the res-
olution

Model-based parameter estimation using subspace methods has received signif-
icant attention in the literature [33] [38] [65]. In many problems encountered
in practice, such as finding a direction of arrival (DOA), frequency estimation,
channel estimation and others, subspace-based methods provide an attractive
alternative to a more complex maximum likelihood (ML) estimator, as they
yield accurate estimates at a reasonable computational cost. However, the prob-
lem encountered in all model-based methods is that their performance typically
degrades if the signal contains closely spaced components. This can become
critical in certain applications, such as channel estimation in ultra-wideband
systems [49], where one has to estimate many closely spaced components in a
very low signal-to-noise ratio regime. In the following, we present two different
techniques that improve the resolution performance of the developed scheme
without increasing the data set used for estimation.

Consider again the data matrix X, defined in (2.19). In order to estimate
the signal poles zk’s, we have exploited the shift-invariant subspace property
(2.25), that is, U = U · Φ, or alternatively, V = V · Φ, where Φ is a diagonal
matrix with zk’s along the main diagonal. However, the Vandermonde structure
of U and V allows for a more general version of (2.25), specifically,

U
p

= Up · Φp and V
p

= Vp ·Φp, (2.49)

where (·)p
and (·)

p
denote the operations of omitting the first p rows and last

p rows of (·) respectively [78]. In this case, the matrix Φp has elements zp
k =

e−jω0ptk on its main diagonal. Therefore, the advantage of using the values of
p larger than p = 1, is that the effective separation among the estimated time
delays is increased p times, which in turn improves the resolution capabilities
of the method [49]. In the sequel, this approach will be referred to as the
subspace-shifting approach.

Another way to improve the performance in the case of closely spaced com-
ponents is the following. Instead of constructing the data matrix X as in (2.19),
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one can construct another data matrix Xi as

Xi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X [0] X [1] . . . X [N − 1]
X [p] X [p + 1] . . . X [p + N − 1]
X [2p] X [2p + 1] . . . X [2p + N − 1]

...
. . .

X [1] X [2] . . . X [N ]
X [p + 1] X [p + 2] . . . X [p + N ]
X [2p + 1] X [2p + 2] . . . X [2p + N ]

...
. . .

X [p − 1] X [p] . . . X [p + N − 2]
X [2p− 1] X [2p] . . . X [2p + N − 2]

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.50)

That is, Xi is obtained by interleaving the rows of the original matrix X in
(2.19). Similarly to the approach from Section 2.3.1, in the noiseless case, the
matrix Xi can be decomposed as Xi = UiSiVH

i , where Si and Vi are the
matrices given by (2.22) and (2.21) respectively, while the matrix Ui is now
given by

Ui =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
zp
0 zp

1 zp
2 . . . zp

K−1

z2p
0 z2p

1 z2p
2 . . . z2p

K−1

...
. . .

z0 z1 z2 . . . zK−1

zp+1
0 zp+1

1 zp+1
2 . . . zp+1

K−1

z2p+1
0 z2p+1

1 z2p+1
2 . . . z2p+1

K−1

...
. . .

zp−1
0 zp−1

1 zp−1
2 . . . zp−1

K−1

z2p−1
0 z2p−1

1 z2p−1
2 . . . z2p−1

K−1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.51)

Note that each column k of the matrix Ui is made up of p blocks that contain
consecutive powers of the signal pole zk. Therefore, in order to estimate zk’s,
one can exploit the following shift-invariance property:

Ui
p,b

= Uip,b
· Φp, (2.52)

where in this case (·)p,b
and (·)

p,b
denote the operations of omitting the first row

and last row in each block of (·) respectively. Note that the matrix Φp is the same
diagonal matrix as before, with elements zp

k = e−jω0ptk on its main diagonal.
However, since the matrix Xi has better conditioning than the original data
matrix X, the interleaving approach results in better resolution performance, as
we will show in Section 2.6. Therefore, we can state the following proposition.

Proposition 2.2: Consider the matrices X and Xi defined in (2.19) and (2.50)
respectively, and let X = USVH and Xi = UiSiVH

i denote their singular value
decompositions. Then, the following holds:
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1. If {zk}K−1
k=0 are eigenvalues of the matrix Z1 = U+ ·U, then {zp

k}K−1
k=0 are

eigenvalues of the matrix Z2 = Up
+ ·Up

.

2. The matrices Z2 = Up
+ · U

p
and Z3 = Uip,b

+ · Ui
p,b

have identical
eigenvalues.

3. If {tk}K−1
k=0 are the time locations of Diracs estimated from the eigenvalues

{zk}K−1
k=0 , then {ptk}K−1

k=0 are the locations estimated from {zp
k}K−1

k=0 , that
is, the separation between each two components is increased p times.

Finally, we would like to note that since we are considering periodic signals,
estimates of the time locations tk obtained from the powers of the signal poles
zp

k are not unique. That is, for each computed eigenvalue zp
k, there exists a set

of p possible corresponding time delays t̃k, given by t̃k = tk + nT/p, where n =
0, 1, ..., p−1. In order to avoid this ambiguity, one can first find an approximate
location of the cluster of Diracs, by estimating only one principal component,
using the original method from Section 2.3.1, since it is well-known that the
largest signal-space singular vector is relatively insensitive to signal separation
[41]. This information can be used later to select a proper set of the locations
tk, once the values of zp

k have been estimated.

2.5.2 Constructing enhanced data matrix

In the subspace approach presented in Section 2.3.1, we have considered only the
Fourier series coefficients X [m] corresponding to non-negative frequencies mω0,
and proved that in the noiseless case it is possible to obtain perfect estimates of
the time delays and weights of Diracs from only 2K adjacent coefficients X [m].
However, using only the positive coefficients implies that the bandwidth of the
sinc sampling kernel must be at least twice the critical bandwidth, originally
used in the annihilating filter method, meaning that the sampling rate is at
least twice the critical sampling rate. In this section, we show how the subspace
method can be modified so as to use the coefficients with negative indices in the
reconstruction algorithm as well. As we will see in the sequel, the benefit of such
an approach is that one could use lower sampling rates for obtaining the same
performance, or alternatively, one can improve the estimation performance for
a given sampling rate.

As in our previous analysis, consider periodic stream of K weighted Diracs,
x(t) =

∑
n

∑K−1
k=0 ckδ(t − tk − nT ), filtered with a lowpass filter of bandwidth

[−Kω0, Kω0], and sampled uniformly at a critical rate. From a set of samples,
taken over one period, one can compute the Fourier series coefficients X [m],
m ∈ [−K, K], given by (2.7). Construct next a Hankel data matrix X as:

X =

⎛⎜⎜⎝
X [−K + 1] X [−K + 2] . . . X [0]
X [−K + 2] X [−K + 2] . . . X [1]

...
X [1] X [2] . . . X [K]

⎞⎟⎟⎠ . (2.53)

Note that X is of size (K + 1) × K, however, we could have constructed the
matrix of size K × (K + 1) as well. The only difference is that in the first case,
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we will estimate the signal poles from the left singular vectors of X, while in
the latter case, we would estimate them from the right singular vectors.

By analogy to the derivation from 2.3.1, one possible decomposition of noise-
free X is X = USVH , with U, S and V given by

U =

⎛⎜⎜⎜⎜⎜⎝
z−K+1
0 z−K+1

1 z−K+1
2 . . . z−K+1

K−1

z−K+2
0 z−K+2

1 z−K+2
2 . . . z−K+2

K−1

...
1 1 1 . . . 1
z0 z1 z2 . . . zK−1

⎞⎟⎟⎟⎟⎟⎠ , (2.54)

S = diag ( c0 c1 c2 . . . cK−1 ) . (2.55)

V =

⎛⎜⎜⎜⎝
1 1 1 . . . 1
z∗0 z∗1 z∗2 . . . z∗K−1

...
z∗0

K−1 z∗1
K−1 z∗2

K−1 . . . z∗K−1
K−1

⎞⎟⎟⎟⎠ , (2.56)

Following the argument from Section 2.3.1, the matrix U can be written in
a more compact form as:

U =

⎛⎜⎜⎜⎜⎜⎜⎝

bΦ−K+1

b ·Φ−K+2

b ·Φ−K+3

...
b
b ·Φ

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.57)

where, as before, b is a row vector of length K, b = [1 1 ... 1], and Φ is a K×K
diagonal matrix Φ = diag(zk). Therefore, one can use the same shift-invariance
property as in (2.25) to estimate the signal poles zk,

U = U · Φ. (2.58)

As already discussed in Section 2.3.1, in practice, when noise is present, the
matrix X will be decomposed using the SVD as

X = UsSsVs
H + UnSnVn

H , (2.59)

and the signal poles zk can be uniquely determined from the eigenvalues λk of
an operator that maps Us onto Us that is,

tk = −T∠λk

2π
. (2.60)

Once the signal poles have been estimated, the weighting coefficients ck can be
found as a least-squares solution to (2.7).

2.6 Simulation Results

In this section, we illustrate the performances of the developed schemes with
simulation results. Experiments are done in discrete-time, with a very long
block size in oder to simulate continuous time.
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We first consider a length 10000 signal made up of a periodic stream of K = 7
weighted Diracs, and analyze the following cases: the locations of Diracs are cho-
sen randomly according to a uniform distribution over the interval [1, 10000];
the first component is chosen randomly over [1, 10000], while the spacing be-
tween the components is a Gaussian random variable with mean m = 20 and
standard deviation d = 1. The signal is filtered with a lowpass filter, having
one of the following bandwidths: B1 = [−500, 500], B2 = [−1000, 1000] and
B3 = [−1250, 1250], and in each case, a lowpass version of the signal is sampled
uniformly at a critical rate. The spectrum of the signal and the bandwidths
used for estimation are illustrated in Figure 2.1(a). In Figure 2.1(b), we plot
the mean-square error (MSE) of the position estimates versus signal-to-noise
(SNR) ratio. The error is computed as an average MSE over 100 different trials
and normalized to the signal period. The results indicate that the performance
of the method can be improved by increasing the bandwidth and estimating the
parameters from a larger set of samples. Yet, such an improved performance
is achieved at the expense of increased computational requirements, since the
complexity of the reconstruction scheme using Nt samples is on the order of
O(N3

t ) [27]. More importantly, the performance of the method degrades in the
case when the average spacing between the Diracs is small compared to the sig-
nal period. For example, when the average spacing is 20 (i.e. 0.2% of the signal
period) and SNR < 10dB, it is no longer possible to reconstruct the signal using
only the band B1, and one should estimate the parameters from a larger signal
subspace.
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Figure 2.1: Periodic stream of Diracs A periodic signal of length 10000, made up of
7 weighted Diracs, is passed through a lowpass filter and sampled uniformly at the critical rate,
determined by the filter bandwidth. We considered 3 different filter bandwidths: B1 = [−500, 500],
B2 = [−1000, 1000] and B3 = [−1250, 1250]. (a) Magnitude of the signal spectrum and bands
used for estimation. (b) MSE of location estimates versus SNR. Solid lines correspond to the
case when the locations are randomly chosen according to a uniform distribution over the interval
[1, 10000], while dashed lines correspond to the MSE in the case when the average spacing between
components is 20 (i.e. 0.2% of the signal period).

However, a more attractive solution to this problem is the one presented in
Section 2.5.1, where the resolution performance is improved by exploiting the
shift-invariant subspace property in a different way, rather than by increasing
the data set used for estimation. In Figure 2.2(a), we compare the MSE ob-
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tained with the original method and the subspace-shifting method from Section
2.5.1. We show the estimation performance for different values of the shift pa-
rameter p, which determines the increase in the effective separation between
the estimated components. Clearly, for all considered values of SNR, the latter
approach results in much better numerical precision. Note that by increasing
the value of p, the estimation accuracy improves, and in this particular case,
the value of p = 10 already yields very good precision. Also note that such an
approach does not increase the overall computational requirements, since the
size of the data matrix is the same as in the original method. In Figure 2.2(b),
we compare the estimation performances of the subspace-shifting approach and
the interleaving method, also presented in Section 2.5.1, and this for different
values of the average spacing between the Diracs. The value of SNR used in
this set of simulations is SNR = 10dB. The results we obtained indicate that
the interleaving technique yields better performance as the spacing between
the components decreases. Besides, the numerical precision achievable by both
techniques is by an order of magnitude better than the precision of the original
method.

In Figure 2.3, we compare the estimation performance of the subspace method
and the annihilating filter approach. We consider the case of a periodic stream
of K = 7 Diracs, randomly distributed over the interval [1, 10000], and assume
that the band B1 is used for estimation (i.e. the total number of samples is
Nt = 1000). For the annihilating filter approach, we plot the MSE of loca-
tion estimates obtained for several values of the filter order, that is, N = 2K,
N = 3K, N = 4K and N = 150. Obviously, as the filter order increases, one
can obtain better estimates, and when N = 150, the subspace method and the
annihilating filter approach yield almost the same results. However, in the latter
case, one has to solve for N >> K zeros of the filter and then estimate the lo-
cations of the Diracs from K = 7 filter zeros closest to the unit circle [74]. This
can be better seen in Figure 2.3, where we show the MSE of location estimates
obtained with the annihilating filter method, and this for different values of the
filter order. That is, even though the number of Diracs is K = 7, the size of the
filter required for the “optimum” performance of the method is more than ten
times larger.

2.7 Conclusion

In this chapter, we have formulated the sampling problem for signals of finite
rate of innovation. We have revisited some of the results for deterministic,
noiseless signals [85], and developed alternative computational tools that allow
for more efficient reconstruction. Specifically, we have considered the case of a
stream of Diracs and developed a subspace framework to signal reconstruction
[65] [58], which provides an elegant and robust solution to the sampling problem.
While some of the tools we used were borrowed from spectral analysis [74], we
have developed techniques that improve resolution capabilities of the existing
spectral estimation schemes in the case when the signal contains closely spaced
components. In the next chapter, we will generalize the subspace framework to
more complex classes of periodic signals with finite rate of innovation, such as
piecewise polynomials and nonuniform splines, as well as extend the results to
finite-length signals.
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Figure 2.2: Periodic stream of Diracs: Improving the Resolution (a) MSE of location
estimates for the original method and the matrix-shifting method vs. SNR. For the latter method,
the error is plotted for different values of the shift parameter p. (b) MSE of location estimates
vs. average spacing between the components. The MSE of the original method is compared to
the MSE’s of the interleaving technique and the subspace-shifting approach.
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Figure 2.3: Annihilating filter method We consider a periodic signal made up of K = 7
Diracs, randomly distributed over the interval [1, 10000]. The signal is filtered through a lowpass
filter B1 = −[500, 500] and a uniform set of Nt = 1000 samples is taken from its lowpass version.
(a) MSE of location estimates obtained by the subspace method vs. MSE obtained using the
annihilating filter approach. In the latter case, we show the MSE for different values of the filter
order. (b) MSE of the annihilating filter approach vs. the filter order, shown for two values of
SNR.



Chapter 3

Sampling Methods in the
Presence of Noise

In the previous chapter, we have considered the problem of sampling a periodic
stream of weighted Diracs and proved that in the absence of noise, such a signal
can be perfectly reconstructed from its projection onto a subspace of dimension
that is greater than or equal to the number of degrees of freedom of the signal.
That is, even though this signal is not bandlimited, we showed that the minimum
sampling rate required for a unique reconstruction is determined by the rate of
innovation of the signal. In the presence of noise, however, one has to increase
the sampling rate beyond the critical rate and estimate the signal parameters
from a larger subspace in order to improve the numerical performance of the
scheme.

In this chapter, we extend our results to other classes of signals with fi-
nite rate of innovation, such as non-uniform splines and piecewise polynomials.
While the problem of sampling such signals in the deterministic, noiseless case
was already considered in [85], many of those methods involve steps that can
result in numerical ill-conditioning in the presence of noise. For example, it was
shown that the problem of reconstructing non-uniform splines or piecewise poly-
nomials can be reduced to the problem of reconstructing streams of Diracs by
taking a sufficient number of signal derivatives. However, when noise is present,
such an approach often results in an ill-conditioned problem, where standard
techniques from noisy spectral estimation, including oversampling and solving
various systems using the singular value decomposition, are not sufficient for im-
proving the numerical performance. This naturally requires a revision of some
of the techniques presented in [85] and development of alternative algebraic ap-
proaches that can solve the problem of ill-conditioning in the presence of noise
and allow for precise reconstruction.

In this chapter, we develop improved, more robust methods that make use
of proper preconditioning techniques and achieve good numerical performance,
while retaining a linear, model-based flavor of the original sampling schemes.
As in the previous chapter, we will focus on a subspace framework for signal
reconstruction [65] [58], which, along with efficient noise suppression via singular
value decomposition, provides an elegant and robust solution to the sampling
problem.

31
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The outline of the chapter is as follows. In Section 3.1, we review some
of the related sampling results from [85], and discuss the problems that arise
in the presence of noise. In Section 3.2, we extend the results from Chapter
2 to more complex classes of periodic signals of finite rate of innovation, such
as nonuniform splines and piecewise polynomials, and propose novel algebraic
approaches that use proper data windowing and solve the problem in the Laplace
domain. We also briefly discuss the case of model mismatch. In Section 3.3,
we consider the sampling problem for finite-length signals, and develop schemes
that avoid the problem of ill-conditioning by appropriate weighting of a data
matrix and allow for an almost local reconstruction. In particular, we investigate
the possibility of developing practical sampling schemes using a Gaussian kernel.
Simulation results that illustrate the numerical performances of the proposed
techniques are shown in Section 3.4, and finally, in Section 3.5, we conclude
with a brief summary of our work.

3.1 Sampling Schemes in the Presence of Noise:
Problem Statement

Consider the following simple example. Let a signal x(t) be a finite-length
continuous-time signal made up of K weighted Diracs, i.e.

x(t) =
K−1∑
k=0

akδ(t − tk). (3.1)

Since the signal is aperiodic, one can no longer use the frequency domain ap-
proach from the previous chapter to estimate the unknown parameters {tk}K−1

k=0

and {ak}K−1
k=0 . However, if the signal is sampled with a proper sampling kernel,

such as a Gaussian or a sinc sampling kernel, one can use similar techniques to
solve for the parameters by exploiting the structure of the signal in the time
domain [85].

In order to show the main idea behind the approach from [85], assume that
the signal is filtered with the Gaussian kernel hg(t) = e−t2/2σ2

and that Nt ≥ 2K
samples are taken from a filtered version,

yn =< hg(t − nT ), x(t) >, n = 1, ..., Nt. (3.2)

In this case, the sample values are given by

yn =
K−1∑
k=0

ake−(tk−nT )2/2σ2
=

K−1∑
k=0

ake−t2k/2σ2 · entkT/σ2 · e−n2T 2/2σ2
. (3.3)

If we denote by un = ynen2T 2/2σ2
and ck = ake−t2k/2σ2

, then (3.3) is equivalent
to

un =
K−1∑
k=0

ckentkT/σ2
=

K−1∑
k=0

ckzn
k , (3.4)

where zk = etkT/σ2
. Note that the samples un are given by a linear combination

of exponentials zn
k , thus we can reduce the problem of estimating the unknown
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parameters {tk}K−1
k=0 and {ck}K−1

k=0 , into the classical spectral estimation prob-
lem, that is, the problem of estimating frequencies and weighting coefficients of
superimposed exponentials [33] [65] [74].

In the above example, we assumed a deterministic, noiseless signal, when
the presented method yields perfect estimates of all the parameters from only
2K samples. Yet, in the presence of noise, such an approach often gives rise
to numerical ill-conditioning. To understand the main reason for performance
degradation, consider a noisy version of the signal, that is, xn(t) = x(t) + η(t),
where η(t) is additive white Gaussian noise, and consider the set of noisy samples
ỹn, taken with the Gaussian kernel. As in the previous case, by denoting ũn =
ỹnen2T 2/2σ2

and ck = ake−t2k/2σ2
, the set of samples ũn can be expressed as:

(3.3)

ũn =
K−1∑
k=0

ckzn
k + ηnen2T 2/2σ2

. (3.5)

In this case, however, the samples of noise ηn become significantly amplified as
n increases, due to the weighting of ỹn’s with exponentially increasing terms
en2T 2/2σ2

. This obviously makes the above method for reconstructing the signal
from the samples ũn ill-conditioned.

A similar problem occurs with other classes of signals as well, such as piece-
wise polynomials or non-uniform splines. In [85], it was proved that in the
absence of noise, the sampling problem for these signals can be reduced to the
problem of sampling streams of Diracs, and this by taking a sufficient number
of signal derivatives. For example, consider a periodic nonuniform spline x(t) of
period T and degree R, that is, a signal whose (R+1)-th derivative x(R+1)(t) is
a periodic stream of weighted Diracs [85]. If we denote by X [m] and X(R+1)[m]
the Fourier series coefficients of x(t) and x(R+1)(t) respectively, the following
relation holds:

X(R+1)[m] = (jmω0)(R+1)X [m] =
1
T

K−1∑
k=0

cke−jmω0tk , ω0 = 2π/T. (3.6)

Similarly to the argument for numerical ill-conditioning in the case of a set of
Diracs, the problem with this approach is derivation. In particular, in order
to compute the coefficients X(R+1)[m] and estimate the unknown parameters
ck and tk, one first has to multiply all the coefficients X [m] with (jmω0)(R+1),
which amplifies noise as frequency increases. In the case of piecewise polynomi-
als, the method in [85] uses derivation as well, resulting in a sum of derivatives
of Diracs. In addition to noise amplification, such an approach requires identi-
fication of multiple roots of the annihilating filter, a task that is difficult even
in the noiseless case.

This obviously calls for an extension of the original results from [85] to
solve the problems of ill-conditioning and robustness to noise, and to investigate
alternative algebraic approaches that will yield numerically stable and precise
reconstruction. In the following, we will show that by properly exploiting the
signal structure, one can come up with more general constructions that satisfy
all of the above requirements, while still being computationally reasonable.
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3.2 Sampling Periodic Nonuniform Splines and Piece-
wise Polynomials

In this section, we consider the sampling problem for classes of periodic signals
with finite rate of innovation, such as nonuniform splines and piecewise poly-
nomials. In particular, we show how to modify methods from [85] in order to
achieve good numerical performance in the noisy case.

3.2.1 Periodic nonuniform splines

We first consider the sampling problem for periodic nonuniform splines, since
this case is a direct extension of the sampling problem for a stream of Diracs,
which will also set the grounds for the following subsection on piecewise poly-
nomials.

A signal x(t) is a periodic nonuniform spline of period T and degree R, with
knots at {tk}K−1

k=0 ∈ [0, T ], if its (R + 1)-th derivative is a periodic stream of K
weighted Diracs, that is,

x(R+1)(t) =
∑

n

K−1∑
k=0

ckδ(t − tk − nT ). (3.7)

The Fourier series coefficients X(R+1)[m] are given by (3.6), that is, X(R+1)[m] =
1
T

∑K−1
k=0 cke−jmω0tk , where ω0 = 2π/T . Therefore, by considering the coeffi-

cients that correspond to the (R + 1)-th derivative of the original signal x(t),
we can reduce the problem of estimating the unknown signal parameters to
the one of estimating the parameters of superimposed complex exponentials.
Note that the derivation can be done in the frequency domain, by multiplying
the Fourier series coefficients X [m] with (jmω0)(R+1). Once the coefficients
X(R+1)[m] have been computed, the signal parameters can be estimated using
the method developed in Section 2.3.1. However, the problem in the presence of
noise is derivation, as it enhances noise. Therefore, in the following, we present
a modified version of the method from [85], which yields better performance
while retaining the shift-invariant flavor of the original scheme.

Consider again the Fourier series coefficients X [m], given by (3.6). Note that
the term (jmω0)R+1, corresponding to the (R+1)-th derivative operator in the
frequency domain, grows as mR+1. Thus, the idea is to weight the coefficients
X(R+1)[m] with a multiplicative term S[m], which has at least an exponential
decay, in order to compensate for the polynomial growth of (jmω0)R+1. One
possible solution is to choose S[m] = e−smω0 , where s is a parameter that can
be adjusted according to the value of SNR (s is a positive real number) and the
size of the data set used for estimation. Consider thus an expression for the
new, weighted coefficients Xs[m]:

Xs[m] = (jω0m)(R+1)X [m]e−smω0

=
K−1∑
k=0

cke−jmω0tke−smω0

=
K−1∑
k=0

cke−mω0(s+jtk). (3.8)
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Note that the Xs[m]’s are given by a sum of damped exponentials, however, the
shift invariance property (2.25) still holds. Therefore, one can use the method
from Section 2.3.1 to estimate the unknown parameters {ck}K−1

k=0 and {tk}K−1
k=0

from the coefficients Xs[m]. The only difference compared to the original ap-
proach is that the estimated eigenvalues z

(s)
k are now given by z

(s)
k = e−ω0σk ,

where σ
(s)
k = s+jtk. Given that the value of the damping factor s is known, the

time instants tk’s can be found directly from the eigenvalues z
(s)
k , while estima-

tion of the weighting coefficients ck follows the same procedure as before. We
note that this is a general result, which holds for all classes of periodic signals
considered in [85]. Namely, all the methods developed for periodic signals use
the Fourier series coefficients X [m] to extract the signal poles zk = e−jω0tk ,
and thus estimate the unknown locations tk. Alternatively, one can consider
the set of weighted coefficients Xs[m], and use the same techniques to estimate
the scaled version of the signal poles, z

(s)
k = e−ω0(s+jtk). Therefore, instead of

solving the problem in the Fourier domain [85], one can solve the problem in
the Laplace transform domain, which allows for the same algorithmic tools, and
yet leads to better conditioning for certain classes of signals. Thus, we have the
following proposition.

Theorem 3.1: Consider a periodic nonuniform spline x(t) of period T and de-
gree R, with the (R+1)−th derivative of the form x(R+1)(t) =

∑
n

∑K−1
k=0 ckδ(t−

tk − nT ), and Fourier series coefficients X(R+1)[m] = 1
T

∑K−1
k=0 cke−jmω0tk ,

ω0 = 2π/T . Consider a weighted set of coefficients Xs[m] = X(R+1)[m]e−smω0 ,
s ≥ 0. If H(z) is the annihilating filter for X [m], then H(ze−sω0) will be the
annihilating filter for Xs[m], and vice versa. An equivalent statement holds for
eigenvalues obtained by the subspace approach (4.17).

While in the above proposition we made no assumption on the value of the pa-
rameter s, in practice, it should be chosen such that in a considered frequency
band, the power spectral density of noise, weighted by |(jmω0)(R+1)e−smω0 |2,
is as uniform as possible (and does not exceed the power spectral density of a
signal). However, we should note that in the general case of nonuniform splines
of degree R > 1, the method may still be sensitive to noise, despite window-
ing. Namely, in the case when transitions between adjacent pieces are almost
smooth, it is difficult to extract the discontinuities in the differentiated signal,
even with proper windowing. In the case of piecewise polynomials, this is not
an issue, since the signal itself already contains discontinuities.

3.2.2 Piecewise polynomials

Similarly to the definition of periodic nonuniform splines, a signal x(t) is a
periodic piecewise polynomial of period T , having K pieces of maximum degree
R, if and only if its (R + 1)-th derivative is a periodic stream of differentiated
Diracs, that is,

x(R+1)(t) =
∑

n

K−1∑
k=0

Rk−1∑
r=0

ck,rδ
(r)(t − tk − nT ). (3.9)
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The corresponding Fourier series coefficients are given by

X(R+1)[m] =
1
T

K−1∑
k=0

Rk−1∑
r=0

ck,r(jω0m)re−jmω0tk . (3.10)

By denoting c̃k,r = (1/T )ck,r(jω0)r, we obtain

X(R+1)[m] =
K−1∑
k=0

Rk−1∑
r=0

c̃k,rm
re−jmω0tk . (3.11)

As discussed in the previous section, the problem in the presence of noise is
differentiation. Therefore, instead of considering the set of coefficients corre-
sponding to the (R + 1)-th derivative, the idea is to consider a set of weighted
coefficients X

(R+1)
s [m] = X(R+1)[m]e−jsmω0 , given by

X(R+1)
s [m] =

K−1∑
k=0

Rk−1∑
r=0

c̃k,rm
re−mω0(s+jtk). (3.12)

However, in this case, it is no longer obvious that the shift-invariant subspace
property (2.25) can be exploited, since each term e−mω0(s+jtk) is additionally
multiplied by a polynomial

∑Rk−1
r=0 mr. That is, the coefficients X

(R+1)
s [m] are

given by a non-linear combination of complex exponentials. In the following,
we will show that one can still obtain a closed-form subspace solution to the
problem of parameter estimation from X

(R+1)
s [m]. Specifically, since the exact

solution can be relatively easily obtained using the annihilating filter method
[85], we will use Theorem 3.1, to find a subspace solution to the problem. This
will provide a practical approach for solving a more general class of non-linear
estimation problems [49], and will also extend classic high-resolution spectral
estimation techniques [33] [65] [74].

Consider thus the annihilating filter H(z) =
∑N

m=0 H [m]z−m, which satisfies

(H ∗ X(R+1)
s )[n] = 0, ∀n ∈ Z. (3.13)

In [85], it was shown that in the case when the coefficients X
(R+1)
s [n] are given

by (3.12), the annihilating filter has multiple roots at zk = e−ω0(s+jtk), that is,

H(z) =
K−1∏
k=0

(1 − e−ω0(s+jtk)z−1)R =
RK∑
m=0

H [m]z−m. (3.14)

Namely, the key is to observe that each component S
(R+1)
k,r [m] = mre−mω0(s+jtk)

in (3.12) is annihilated by a filter which has r + 1 zeros at z
(s)
k = e−ω0(s+jtk)

[85], i.e.
Hk,r(z) = (1 − e−ω0(s+jtk)z−1)r+1. (3.15)

Since the filter Hk,R−1(z) annihilates all the components S
(R+1)
k,r [m], where r =

0, ..., R − 1, the annihilating filter for the signal X
(R+1)
s [n] is given by

H(z) =
K∏

k=1

Hk,R−1(z) =
K−1∏
k=0

(1 − e−ω0(s+jtk)z−1)R. (3.16)
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Therefore, the information about the time delays tk can be extracted from the
R-th order roots zks of the filter H(z), while the corresponding weights ck,r can
be then found by solving the system of linear equations (3.10).

Let us show next how this result can be used to find a subspace solution to
the estimation problem. Following the approach from Section 2.3.1, given a set
of the coefficients X

(R+1)
s [m], one first has to construct a Hankel data matrix X

of size M × N , where M, N ≥ RK. The second step is to compute the SVD of
X and extract its RK principal left singular vectors Us (or alternatively, RK
principal right singular vectors Vs). Once Us has been estimated, one should
compute the matrix H as in (4.17), that is, H = Us

+ ·Us. From Proposition 1,
it follows that the eigenvalues of H are identical to the roots of the annihilating
filter H(z) (3.16). Specifically, since the filter has R-th order roots at z

(s)
k =

e−ω0(s+jtk), k = 1, ..., K, the matrix H will have K distinct eigenvalues at z
(s)
k ,

each with an algebraic multiplicity R. Thus, an equivalent statement to the one
in Proposition 1, holds in this case as well. However, we note that in the presence
of noise, it is desirable to estimate the signal poles from those eigenvalues z

(s)
k

closest to the circle |z| = e−sω0 [74]. Finally, we note that since the signal
already contains discontinuities, the above method will generally result in better
numerical performance than in the case of nonuniform splines.

3.2.3 Model mismatch

In all the methods presented so far, we assumed that both a signal model and
the model order are known a priori. This allowed us to select an appropriate
reconstruction technique, as well as the size of the data matrix, to ensure that
all the signal parameters are reliably estimated. In the presence of noise, the
low-rank subspace property is destroyed and such an increased dimension of the
solution set must be dealt with carefully.

In the problem of estimating the parameters of superimposed exponentials,
the model order can be obtained from the number of dominant singular values of
the noisy data matrix, which is a very good estimate provided that the smallest
singular value of the original, noiseless matrix dominates the noise variance.
However, for low values of SNR, it is often difficult to discriminate between
small singular values corresponding to the signal from extraneous ones due to
noise and, typically, only dominant signal components can be reliably estimated
[74]. The problem becomes more involved in the case of piecewise polynomials
and non-uniform splines, since one has to take a sufficient number of signal
derivatives prior to constructing the data matrix. Such an approach obviously
raises the following question: how to reconstruct the signal in the case when
neither the signal model nor the model order are known? While at this point
we do not have a formal answer to this question, we would still like to point to
one possible solution, that is, finding a piecewise constant approximation of the
signal.

In order to explain the main idea behind such an approach, consider a peri-
odic signal x(t) of period T , filtered with a lowpass filter and sampled uniformly
at a critical rate. In the case when the bandwidth of the filter is relatively low
compared to the effective bandwidth of the original signal, one could expect that
the Shannon interpolation formula would not yield a good approximation of the
signal. Therefore, following the approach used for reconstruction of a stream of
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Diracs from a lowpass version, one can obtain a piecewise constant approxima-
tion xa(t) of the signal. This would potentially yield a better approximation,
particularly for signals with discontinuities.

Assume thus that xa(t) contains M constant pieces. In this case, xa(t) is
uniquely determined by a set of transition instants {tm}M

m=1 and the correspond-
ing amplitudes {am}M

m=1. The key is to consider the first derivative xd(t) of the
piecewise constant approximation xa(t). By denoting cm = am−am−1, the first
derivative xd(t) is given by a periodic sum of weighted pulses,

xd(t) =
d

dt
xa(t) =

∑
n

M−1∑
m=0

cmδ(t − tm − nT ). (3.17)

The idea is to approximate the first derivative of x(t) with the sum of weighted
Diracs, instead of approximating the original signal x(t). This can be done using
the method developed in Section 2.2 and estimating the values of {tm}M

m=1 and
{cm}M

m=1 from the following system:

jω0nX [n]e−snω0 =
M−1∑
m=0

cme−nω0(s+jtm). (3.18)

where jω0X [n] are the Fourier series coefficients corresponding to the first
derivative of the original signal. Note that these coefficients are windowed by
exponentially decaying terms w[n] = e−snω0 , in order to avoid ill-conditioning
of the system (3.8).

3.3 Aperiodic Signals of Finite Rate of Innovation

So far, we have considered the sampling problem for periodic signals of finite rate
of innovation and developed methods that exploit the structure of the Fourier
series coefficients. The problem becomes more challenging in the aperiodic case,
since the frequency domain approach cannot be used. Therefore, we will present
alternative methods that solve the problem in the time domain. In particular,
we will consider schemes where a signal is sampled with a Gaussian kernel, since
in such a case the signal samples have an algebraic structure that can be easily
exploited (3.3)-(3.4) [85].

3.3.1 Streams of Diracs

Consider first the basic problem discussed in Section 3.1, that is, the problem of
sampling the finite stream of K weighted Diracs, x(t) =

∑K−1
k=0 akδ(t− tk), with

the Gaussian kernel hσ(t) = e−t2/2σ2
. Denote by yn the samples of the noiseless

signal and let wn = en2T 2/2σ2
. We have shown that the weighted set of samples

un = ynwn can be expressed as a sum of real exponentials (3.4), that is,

un =
K−1∑
k=0

ckentkT/σ2
=

K−1∑
k=0

ckzn
k ,

where zk = etkT/σ2
and ck = akwk. In practice, the samples un will be perturbed

by noise, and the noisy measurements ũn can be expressed as

ũn = un + wnηn, (3.19)
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where ηn denote the samples of additive white Gaussian noise. Clearly, the
problem in the presence of noise is exponential weighting of the samples (with
terms n2 in the exponent), and the Laplace domain formulation discussed in
Section 3.2.1 does not provide a good alternative1. We will thus present a
similar approach to the one developed for periodic signals, which can be viewed
as a generalization of the Laplace domain solution.

Consider again the subspace approach, where the following Hankel matrix
is constructed:

X̃ =

⎛⎜⎜⎝
ũ0 ũ1 . . . ũN−1

ũ1 ũ2 . . . ũN
...

...
. . .

ũM−1 ũM . . . ũM+N−2

⎞⎟⎟⎠ , (3.20)

where M, N ≥ K, and assume for simplicity that M ≥ N . Denote by X a matrix
constructed from the noiseless samples un. Then we can write X̃ = X + W,
where the matrix W is made up of weighted samples of noise,

W =

⎛⎜⎜⎝
w0η0 w1η1 . . . wN−1ηN−1

w1η1 w2η2 . . . wNηN
...

...
. . .

wM−1ηM−1 wMηM . . . wM+N−2ηM+N−2

⎞⎟⎟⎠ . (3.21)

For medium to high values of SNR, the perturbation on the matrix X has little
effect on the principal singular vectors. In such a case, a rank K approxima-
tion of the noiseless data matrix X can be obtained by computing the singular
value decomposition of X̃ and setting all but the K largest singular values to
zero. However, in our case, due to the exponential weighting of noise samples,
dominant singular values do not necessarily belong to the signal space, as they
may also include those corresponding to noise. In the following, we propose a
scaling technique that additionally multiplies the entries of the noisy matrix X̃
in order to make the noise variance as uniform (and minimal) as possible. This
will allow us to use the SVD for noise suppression.

The idea is to replace X̃ with another matrix

X̃s = AX̃B = AXB + AWB.

In general, A and B can be any invertible matrices, however, the goal is to
choose those matrices such that the entries of Ws = AWB have a uniform
and minimum variance. One possible solution is to make both A and B to be
diagonal matrices, since any linear combination of lines or columns of W would
increase the noise variance. In order to obtain a uniform variance, the elements
of A and B can be chosen as:

A[i, i] =
1

1
N

∑N−1
n=0 wn+i

, i = 0, . . . , M − 1, (3.22)

B[j, j] =
1

1
M

∑M−1
m=0 A[m, m]wm+j

, j = 0, . . . , N − 1. (3.23)

1According to the Laplace domain solution, the samples are additionally weighted with
exponentially decreasing terms, however, these terms must have n in the exponent in order
to be able to express the weighted samples as a sum of (damped) exponentials.
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As a result of such a transformation, one can think of the entries of Ws as
being the samples of additive white noise. Now we can use the singular value
decomposition of the noisy matrix X̃s, i.e.

X̃s = UsSsVs
H + UnSnVn

H ,

where the first term contains K principal components of X̃s. However, note
that the above transformation destroys the Hankel structure of the original data
matrix. Therefore, once the principal components of X̃s have been computed,
one can compensate for the effects of A and B by constructing a new, denoised
data matrix Xd as

Xd = A−1UsSsVs
HB−1. (3.24)

The above approach can further be simplified as follows. Suppose that we
estimate the signal poles from right singular vectors of Xd. In such a case, left
multiplication of the matrix UsSsVs

H by A−1 is not required, since it does not
change the right singular vectors.

3.3.2 Nonuniform splines

We will now extend the analysis to the more general class of finite-length signals
with finite rate of innovation, such as non-uniform splines. A signal x(t) is a
nonuniform spline of degree R if and only if its (R+1)-th derivative is a stream
of weighted Diracs, that is,

x(R+1)(t) =
K−1∑
k=0

ckδ(t − tk). (3.25)

Clearly, by sampling the signal x(R+1)(t) with the Gaussian kernel, we can
reduce the problem of signal reconstruction to the one of estimating the param-
eters of superimposed weighted Diracs, which can be solved using the method
from Section 2.3.1. However, since we have no access to the derivatives of the
input signal, an equivalent approach would be to sample the input signal with
an (R + 1)-th derivative Gaussian kernel. Such a kernel can be expressed as

h(r+1)
σ (t) =

dr

dtr
{e−t2/2σ2} = Pr(t)e−t2/2σ2

, (3.26)

where Pr(t) is a polynomial of degree r, given by the following recurrence rela-
tion:

P0(t) = 1; Pr(t) = P ′
r−1(t) −

t

σ2
Pr−1(t). (3.27)

Note that in the case when σ2 = 1/2, the polynomial Pr(t) in (3.26)-(3.27) is a
Hermite polynomial of degree r [17]. In Section 3.3.4, we will show how one can
approximate such kernels with a linear combination of Gaussian functions. Such
an approach will lead to a more practical version of the sampling scheme where
the signal is sampled with the Gaussian kernel, while all further manipulations
are carried out on a set of samples.
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3.3.3 Piecewise polynomials

Similarly to the periodic case, a signal x(t) is a piecewise polynomial with K
pieces, each of maximum degree R, if and only if its (R + 1)-th derivative is a
stream of differentiated Diracs, that is,

x(R+1)(t) =
K−1∑
k=0

R∑
r=0

ck,rδ
(r)(t − tk). (3.28)

Thus, if the signal is sampled with a (R + 1)-th derivative Gaussian kernel, the
samples yn are given by

yn =
K−1∑
k=0

R∑
r=0

ck,r
dr

dtr
{e−(t−tk)2/2σ2}

∣∣∣∣∣
t=nT

. (3.29)

As already discussed in Section 3.3.1, we can consider a new set of samples un,
obtained by multiplying yn with wn. If we let Pr(t) be an r-th order polynomial
from (3.27) and c̃k,r = ck,re

t2k/2σ2
, then the samples un = ynwn can be expressed

as:

un =
K−1∑
k=0

R∑
r=0

c̃k,rPr(nT − tk)entkT/σ2
. (3.30)

Since in the above expression each exponential entkT/σ2
is additionally multi-

plied by a polynomial in tk, one can use the subspace approach discussed in
Section 3.2.2 to solve for all the unknown parameters. Note that in this case
one has to have access to the derivatives of the signal x(t) as well, or alter-
natively, one should use the (R + 1)-th derivative Gaussian kernel. However,
such an approach is not desirable in practice, since one often cannot choose the
sampling kernel arbitrarily. In the following, we present a method that allows
the signal to be sampled with the Gaussian kernel, while the derivatives of the
signal are then computed from a set of samples.

3.3.4 Practical realization of the Gaussian sampling schemes

Consider again the Gaussian kernel hσ(t) = e−t2/2σ2
. The idea is to express the

n-th derivative Gaussian kernel as a linear combination of the shifted versions
of hσ(t). Let h

(1)
σ (t) = hσ(t − σ/m) − hσ(t + σ/m), where σ/m is the corre-

sponding shift. By choosing m ≥ 3, the function h
(1)
σ (t) becomes a very good

approximation of the first derivative Gaussian function (up to a scaling factor).
In order to show this, consider the Fourier transform of h

(1)
σ (t), i.e.

H(1)
σ (ω) = Hσ(ω)ejωσ/m − Hσ(ω)e−jωσ/m, (3.31)

where Hσ(ω) denotes the Fourier transform of hσ(t). Since Hσ(ω) =
√

2πσe−ω2σ2/2,
we have

H(1)
σ (ω) =

√
2πσe−ω2σ2/2 · (ejωσ/m − e−jωσ/m). (3.32)

By using the Taylor series expansion of the second term in (3.32), we obtain

H(1)
σ (ω) =

√
2πσe−ω2σ2/2(1 + jωσ/m +

(jωσ/m)2

2!
+

(jωσ/m)3

3!
+ . . .)
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− √
2πσe−ω2σ2/2(1 − jωσ/m +

(jωσ/m)2

2!
− (jωσ/m)3

3!
+ . . .)

=
√

2πσe−ω2σ2/2(2jωσ/m + 2
(jωσ/m)3

3!
+ 2

(jωσ/m)5

5!
+ . . .).

The key is to observe that H
(1)
σ (ω), which is given by a product of a polynomial

in variable ν = ωσ, and an exponentially decaying function of ν2, contains only
one dominant term, that is,

H(1)
σ (ω) ≈

√
2πσe−ω2σ2/2 · 2jω

σ

m
. (3.33)

This can be seen in Figure 3.1(a), where we plot the magnitude of the first
three terms in the above sum for m = 3. Now one can compare the expression
in (3.33) with an expression for the Fourier transform of the first-derivative
Gaussian function, given by

F{ d

dt
hσ(t)} =

√
2πσe−ω2σ2/2 · jω. (3.34)

Note that there is only a scaling relation between the two expressions, therefore,
the above approach gives a good approximation of the first derivative Gaussian
function, which is illustrated in Figures 3.1(b)-(d).

The same idea can be used to approximate higher-order derivatives of the
Gaussian kernel, using the following recurrence relation:

h(n)
σ (t) =

m

2σ
(h(n−1)

σ (t − σ/m) − h(n−1)
σ (t + σ/m)), n = 2, 3, 4, ... (3.35)

As in the previous case, the best way to see this is to note the following relation
in the frequency domain:

e−ω2σ2/2(jω)n−1(ejωσ/m − e−jωσ/m) ≈ 2σ

m
e−ω2σ2/2(jω)n. (3.36)

Let us now return to the sampling problem for finite length signals. For
example, consider a piecewise polynomial of maximum degree R. We have seen
that in order to reconstruct the signal, one has to take samples with the (R+1)-
th derivative Gaussian kernel at locations kT . Following the procedure described
above, these samples can be obtained from the set of samples taken with the
Gaussian kernel at sampling instants kT − rσ/2, where r = −R,−R + 1, ..., R.
This leads to a practical version of the developed algorithm, which we will
illustrate in the next section.

3.4 Simulation Results

3.4.1 Periodic signals

In this section, we illustrate the performances of the developed schemes with
simulation results. We first consider the case of a periodic nonuniform spline
of period T = 1000 and degree R = 1, embedded in additive white Gaussian
noise. The signal is filtered with a lowpass filter of bandwidth B = [−50, 50]
and a uniform set of 100 samples is taken from the lowpass version. In order
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Figure 3.1: Approximation of the derivatives of a Gaussian kernel (a) Magnitude

of the first three terms in the Taylor series expansion of H
(1)
σ (ω). (b) First derivative Gaussian

kernel and its approximated version. (c) Second derivative Gaussian kernel and its approximation.
(d) Third derivative Gaussian kernel and its approximation.

to reconstruct the signal from the set of samples, we used the approach from
Section 3.2.1, where the scaling parameter s is chosen to be s = 0.015. In
particular, we first estimated the locations of the transition points, and then
found the least-squares (LS) linear fit between each two transitions based on
a set of samples. In Figure 3.2, we show the noisy version (SNR=27dB) and
the reconstructed signal, where the reconstruction error is MSE=0.0135. While
in this case we have obtained a good reconstruction of the original signal, in
general, for R > 1, the method becomes more sensitive to noise, as already
discussed in Section 3.2.1.

In the following example, we consider a noisy piecewise linear signal of length
1000 (SNR=15dB), made up of 7 pieces. The signal is passed through a low-
pass filter of bandwidth B = [−100, 100], and a set of 200 uniform samples is
taken from the lowpass version. We used the approach from Section 3.2.2 to
reconstruct the signal, with the scaling parameter s = 0.01. As in the pre-
vious case, we first extracted the locations and weights of the discontinuities,
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and then computed the best (LS) linear fit between each two adjacent discon-
tinuities. In Figure 3.2(b), we show the noisy version and the reconstructed
signal. The reconstruction error is MSE=0.015, however, we should note that
as SNR decreases, the method is less sensitive to noise than it was the case with
nonuniform splines.

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

4

5
Noisy nonuniform spline and reconstructed signal

original noisy signal
reconstructed signal

0 100 200 300 400 500 600 700 800 900 1000
−5

−4

−3

−2

−1

0

1

2

3

4

5
Noisy piecewise linear signal and reconstructed signal

original noisy signal
reconstructed signal

(a) (b)

Figure 3.2: Periodic nonuniform splines and piecewise polynomials (a) Noisy
nonuniform spline (SNR=27dB) of degree R = 1 and reconstructed signal. The signal is recon-
structed with an error of MSE=0.0135. The error is defined as MSE = E{(xest − x)2}/E{x2},
where xest and x denote respectively, the estimated signal and the original signal in one period.
(b) Noisy piecewise linear signal (SNR=15dB) and reconstructed signal. MSE of reconstruction
is MSE=0.015.

3.4.2 Finite length signals

In this set of simulations, we consider finite length signals and evaluate the
performance of the schemes based on a Gaussian sampling kernel. We first
analyze the case of a length 1000 signal, made up of K weighted Diracs, where
K takes on values between K = 2 and K = 12. We assume that the spacing
between the Diracs is a Gaussian random variable with mean ts = 60 and
standard deviation d = 3. The signal is filtered with a Gaussian kernel hσ(t) =
e−t2/2σ2

. In Figure 3.3(a), we show the MSE (normalized to the length of the
signal) of position estimates obtained using the method from Section 3.3.1, in
the case when K = 6 and σ = 35. The results are compared to the error
obtained using the original method (i.e. no weighting of the data matrix). Note
that by using the original method, it is not possible to reconstruct the signal
for values of SNR lower than 25dB, whereas preconditioning of the data matrix
X (3.20) allows for significantly better estimation performance. Yet, in order to
ensure a good performance of the algorithm, the width of the Gaussian kernel σ
must be chosen carefully. This can be seen in Figures 3.3(b)-(c), where we plot
the reconstruction error as a function of the parameter σ/ts, where ts denotes
the average spacing between the components. The error is plotted for different
values of SNR (Figure 3.3(b)), as well as different number of Diracs K (Figure
3.3(c)). The results indicate strong sensitivity to the choice of the parameter σ,
specifically as K increases. In Figure 3.3(d), we show the reconstruction error
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versus the number of Diracs K, while the parameter σ is chosen such that the
MSE of reconstruction is minimized. Note that for all considered values of SNR,
the method yields good performance for K < 10, however, when the number
of Diracs further increases, the performance degrades significantly. The main
reason for such a behavior is the following: as the number of components K
increases, the time window where the signal must be sampled increases as well,
and its duration is approximately given by Kts. Yet, the optimum width σopt

of the sampling kernel is only a fraction of the average spacing ts, for example,
when K = 8, σopt ≈ 0.7ts (see Figure 3.3(c)). Given the exponential decay
of the Gaussian kernel, for large values of K, at each sampling instant we will
obtain the information only about a limited number (K1 < K) of Diracs, which
results in bad conditioning of the system. This makes the Gaussian scheme
suitable mainly for local reconstruction, where the overall sampling window is
adapted to the width of the kernel. This is illustrated in Figure 3.3(d) as well,
where we plot the MSE for K ≥ 9, in the case when we sample the signal
over two distinct time windows (of approximately equal duration), and in each
window we perform local reconstruction. Such an approach clearly improves the
performance of the original method.

In Figure 3.4(a), we illustrate a noisy piecewise constant signal (SNR=25dB)
of length 1000, made up of 7 pieces. The signal is filtered with a Gaussian kernel
with σ = 75, as shown in Figure 3.4(b), and a set of 160 samples is taken from
the filtered version shown in Figure 3.4(c). The first derivative of the signal is
computed according to (3.35), and the method from Section 3.3.1 is used for
reconstruction. A reconstructed signal is illustrated in Figure 3.4(d), where the
reconstruction error is MSE = 6 · 10−3. In Figure 3.4(e), we show the MSE of
reconstruction versus SNR, for several different values of the number of samples
N . The results indicate that the performance of the method improves as the
number of samples increases. In this case, a very good reconstruction can be
already obtained for N = 120, and by further increasing the number of samples,
the performance does not significantly improve.

3.4.3 Model mismatch

In Figures 3.5 and 3.6, we illustrate robustness of our schemes to model mis-
match. We first consider a noisy signal made up of K = 15 weighted Diracs,
where the locations are randomly chosen according to a uniform distribution
over the interval [1, 1000], while the weights are i.i.d. zero mean Gaussian ran-
dom variables with unit variance. The signal is filtered with a lowpass filter
of bandwidth [−100, 100] and 200 uniform samples are taken from the low-
pass version. We used the subspace method from Section 2.3.1, where no prior
knowledge of the model order is assumed. That is, the number of components
is estimated as the number of dominant singular vectors of the corresponding
data matrix. In Figure 3.5(b), we show the reconstructed stream of pulses, and
obviously, only the dominant pulses have been extracted.

We next consider the case of a periodic piecewise polynomial signal of de-
gree R = 3 embedded in noise, where the signal model is not known in advance.
The signal is lowpass filtered and a uniform set of 40 samples is taken from
the lowpass version. Since we made no assumption on the model, we approx-
imated the signal with a piecewise constant function with M = 16 pieces, as
illustrated in Figure 3.6(a). In Figure 3.6(b), we show the noiseless signal and
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Figure 3.3: Aperiodic stream of Diracs: We consider a signal of length 1000, made up
of K weighted Diracs (K is varied between 2 and 12), and sampled with the Gaussian kernel

e−t2/2σ2
. Average spacing between the components is assumed to be ts = 60. (a) MSE of

position estimates vs. SNR, for K = 6, σ = 35. The MSE of the original method (i.e. with no
weighting of the data matrix) is compared to the MSE obtained by the method from Section 3.3.1.
(b) MSE of reconstruction vs. the width of the Gaussian kernel. The error is plotted as a function
of the parameter σ/ts (and is shown for different values of SNR), indicating a sensitivity of the
method to the choice of the width σ. (c) MSE vs. σ/ts , for different values of K. (d) MSE
vs. number of Diracs K. For each value of K, we chose the optimal value of the kernel width
σ, that is, the one which minimizes a reconstruction error. Dashed lines correspond to the MSE
obtained by sampling the signal over two smaller time windows and finding local reconstruction in
each window.

the reconstructed lowpass version using Shannon’s interpolation formula, where
the frequency band used for reconstruction is the same as in the previous case.
Obviously, our approach yields a better representation of discontinuities, which
points to some robustness of our scheme to model mismatch.
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3.5 Conclusion

In this chapter, we have considered the sampling problem for signals of finite
rate of innovation in the presence of noise. We have revisited some of the results
for deterministic, noiseless signals [85], and developed more robust methods that
improve conditioning of the original schemes and allow for much better numer-
ical performance. For classes of periodic signals, such as piecewise polynomials
and nonuniform splines, we proposed novel algebraic solutions that use proper
windowing and solve the problem in the Laplace domain. While some of the
tools we used were borrowed from spectral analysis [74], our framework ex-
tends classic spectral estimation techniques and allows for solving more general
classes of nonlinear estimation problems. We have also considered finite-length
signals, and proposed improved schemes based on a Gaussian sampling kernel
and weighting of the data matrix. Both the numerical analysis and simulation
results indicate desirable properties of the proposed methods, particularly for
classes of signals that contain discontinuities.
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Figure 3.4: Aperiodic piecewise constant signal (a) Noisy piecewise constant signal
(SNR=25dB). (b) Gaussian kernel. (c) Filtered signal. (d) Noisy signal and reconstructed
piecewise constant signal. The signal is reconstructed from N = 160 samples, with an error of
MSE = 6 · 10−3. (e) Reconstruction error vs. SNR for different number of samples. The error is
defined as MSE = E{(xest − x)2}/E{x2}.
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Figure 3.5: Model mismatch: unknown model order (a) The periodic signal made
up of 15 weighted Dirac pulses, with 8 pulses being dominant. (b) Reconstructed dominant
components.
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Figure 3.6: Model mismatch: unknown signal model (a) Piecewise polynomial signal,
noisy signal and the piecewise constant approximation. (b) Original signal and reconstructed
lowpass version using Shannon’s interpolation formula.





Chapter 4

High-Resolution
Synchronization and Channel
Estimation in Ultra-Wideband
Systems

Ultra-wideband (UWB) technology has recently received much attention due to
the benefits of an extremely wide transmission bandwidth, such as very fine time
resolution for accurate ranging and positioning as well as multipath fading mit-
igation in indoor wireless networks [16] [25] [92] [93] [94]. Although techniques
for UWB signaling have been investigated for at least two decades, primarily for
radar and remote sensing applications, there are many open problems that need
to be solved before this technology becomes pervasive. Some of the remaining
issues include low-power and low-cost designs and efficient algorithmic solutions
suitable for digital implementation.

The wideband nature of UWB brings new research challenges both in the
analysis and practice of reliable systems. One of the main challenges in the
design of digital UWB receivers is rapid acquisition and synchronization. While
several high-performance methods for analog UWB systems already exist [24]
[25], no comparable techniques have emerged yet for digital solutions, mainly
due to prohibitively high computational requirements [22] [89]. Furthermore,
implementation of standard synchronization techniques in digital UWB receivers
would require very fast A/D converters, operating in the gigahertz range, and
thus high power consumption. Another challenge arises from the fact that the
design of an optimal UWB receiver must take into account certain frequency-
dependent effects on the received waveform. That is, due to the broadband
nature of UWB signals, the components propagating along different paths typ-
ically undergo different frequency-selective distortions [13] [16]. As a result, a
received signal is made up of pulses with different pulse shapes, which makes
the problem of optimal receiver design a much more delicate task than in other
wideband systems.

In this chapter, we present a new approach to channel estimation and tim-
ing in digital UWB receivers, which allows for sub-Nyquist sampling rates and
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reduced receiver complexity, while retaining a good performance. We develop a
frequency domain framework which yields high-resolution estimates of channel
parameters by sampling a low-dimensional subspace of the received signal. Our
approach allows for lower sampling rates and reduced complexity and power con-
sumption compared to other digital techniques [22] [30] [89]. It is particularly
suitable in applications such as precise position location or ranging, synchroniza-
tion in wideband systems, but can also be used for characterization of general
wideband channels [16] without requiring additional hardware support.

The outline of this chapter is as follows. In Section 4.1, we introduce a model
of a multipath fading channel and present the frequency domain framework that
allows for high-resolution channel estimation from a subsampled version of the
received signal. In Section 4.2, the case of more realistic UWB channel models
is studied, where we extend our framework to the problem of joint estimation of
pulse shapes and time delays along different propagation paths. In Section 4.3,
we discuss possible generalizations of our results to the problem of estimating
channel parameters from multiple (not necessarily adjacent) frequency bands.
In particular, we develop a more general framework that incorporates a filter
bank at the receiver and allows for the estimation of the channel from several
bands with highest signal-to-noise ratio1. In Section 4.4, we discuss numerical
performances and computational complexity of the proposed algorithms and
present alternative methods with lower computational requirements, which can
be used to estimate the parameters of a few dominant paths. One possible ap-
plication of our results to low-complexity synchronization in UWB systems for
precise position location is presented in Section 4.5. We specifically discuss a
multiresolution or two-step approach to acquisition in such systems, which pro-
vides unique advantages over existing techniques in terms of acquisition speed
as well as computational and power requirements. In Section 4.6, we present
some simulation results that indicate the effectiveness of our schemes, showing
performances that exceed those of conventional methods. In Section 4.7, we
briefly describe the application of our method to low-complexity synchroniza-
tion in wideband CDMA systems, and to the problem of joint angle and delay
estimation. Finally, in Section 4.8, we conclude with a summary of our results.

4.1 Channel Estimation at Low Sampling Rate

4.1.1 Problem statement

A number of propagation studies for ultra-wideband signals have been done,
taking into account temporal properties of a channel or characterizing a spatio-
temporal channel response [16]. A typical model for the impulse response of a
multipath fading channel is given by

h(t) =
L∑

l=1

alδ(t − tl) (4.1)

where tl denotes a signal delay along the l-th path while al is a propagation
coefficient along the l-th path. Although this model does not adequately reflect

1This has the notion of prescribing which signal samples to include in order to maximize
the performance, given the total number of samples allowed in the system.
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specific frequency-dependent effects, it is commonly used for diversity reception
schemes in conventional wideband receivers (e.g. RAKE receivers) [61]. Equa-
tion (4.1) can be interpreted as saying that a received signal y(t) is made up
of a weighted sum of attenuated and delayed replicas of the transmitted signal
s(t), i.e.

y(t) =
L∑

l=1

als(t − tl) + η(t) (4.2)

where η(t) denotes receiver noise. Note that the received signal y(t) has only
2L degrees of freedom, that is, time delays tl and propagation coefficients al.
Therefore, when s(t) is known a priori and there is no noise, it would be possible
to perfectly reconstruct the signal by taking only 2L samples of y(t). While all
the unknown parameters can be estimated using the time domain model (4.2),
an efficient, closed-form solution is possible if we consider the problem in the
frequency domain.

Let Y (ω) denote the Fourier transform of the received signal

Y (ω) =
L∑

l=1

alS(ω)e−jωtl + N (ω) (4.3)

where S(ω) and N (ω) are the Fourier transforms of s(t) and η(t) respectively.
Clearly, spectral components are given by a sum of complex exponentials, where
the unknown time delays appear as complex frequencies while propagation co-
efficients appear as unknown weights. Therefore, by considering the frequency
domain representation of the signal, we have converted the problem of estimat-
ing the unknown channel parameters {tl}L−1

l=0 and {al}L−1
l=0 into the problem

equivalent to the one discussed in Chapter 2. However, rather than estimating
the channel parameters from a lowpass version of the signal, we will estimate it
from a bandpass version. The reason for using the bandpass approximation is
that the power spectral density (PSD) of the signal at low frequencies is often
very low, and the idea is to estimate the channel parameters from a frequency
band where the PSD of the signal is highest.

In the following, we will show that it is possible to obtain high-resolution
estimates of all the relevant parameters by sampling the received signal below
the traditional Nyquist rate. The general setup we will be considering is shown
in Figure 4.1.
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Figure 4.1: Receiver block diagram
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4.1.2 Bandpass sampling scheme

Suppose that the received signal y(t) is filtered with an ideal bandpass filter
Hb = rect(ωL, ωU ) of bandwidth B = ωU − ωL, and assume for simplicity that
ωL = kB, where k is a non-negative integer number. Let {yn}N−1

n=0 denote a
uniform set of samples taken from the filtered version,

yn =< hb(t − nT ), y(t) >, n = 0, . . . , N − 1. (4.4)

where T is the sampling period, while hb(t) is the time domain representation
of the filter Hb. Note that the above assumption on the position of the filter
passband allows one to sample the signal at a rate determined by the bandwidth
of the filter Rs ≥ 2 B

2π , which is commonly referred to as bandpass sampling
[82]. Otherwise, one can use a more traditional approach of downconverting the
filtered version prior to sampling, which also allows for sub-Nyquist sampling
rates, but requires additional hardware stages in the analog front end. From
the set of samples {yn}N−1

n=0 , one can compute N uniformly spaced samples of
the Fourier transform Y (ω) [85],

Y [m] = Y (mω0), where ω0 =
B

N − 1
, m = M1, ..., M2. (4.5)

Denote by Ys[m] = Y [m]/S[m], and Ns[m] = N [m]/S[m], where S[m] are the
samples of the Fourier transform S(ω) of the transmitted UWB pulse. Assuming
that in the considered frequency band the above division is not ill-conditioned,
the samples Ys[m] can be expressed as a sum of complex exponentials (4.3),

Ys[m] =
L∑

l=1

ale
−j(mω0)tl + Ns[m] (4.6)

In practice, the discrete Fourier transform (DFT) will be used to determine
Y [m] and S[m], therefore, in general, (4.6) will not hold exactly. However, it
will be asymptotically accurate, since the error introduced by DFT is on the
order of O(1/N) (recall that N corresponds to the number of samples). When
y(t) is a periodic signal (e.g. as in the case discussed in Section 4.5), the DFT
coefficients will exactly satisfy (4.6).

As already discussed in Chapter 2, one possible approach to estimating
the channel parameters from the coefficients Ys[m] is to use the annihilating
filter method. That is, one can consider an L-th order FIR filter H(z) =∑L

m=0 H [m]z−m, having L zeros at zl = e−jω0tl ,

H(z) =
L∏

l=1

(1 − e−jω0tlz−1) (4.7)

Since each of the exponentials in Ys[m] will be annihilated by one of the roots
of H(z), we have

(H ∗ Ys)[n] =
L∑

k=0

H [k]Ys[n − k] = 0, for n = L, ..., N − 1. (4.8)

Therefore, the information about the time delays tl can be extracted from the
roots of the filter H(z). The corresponding propagation coefficients al are then
estimated by solving the system of linear equations (4.6).
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4.1.3 Subspace-based approach to channel estimation

Given the set of coefficients Ys[m] (4.6), construct a Hankel data matrix Ys of
size P × Q, where P, Q > L,

Ys =

⎛⎜⎜⎝
Ys[M1] Ys[M1 + 1] . . . Ys[M1 + Q − 1]

Ys[M1 + 1] Ys[M1 + 2] . . . Ys[M1 + Q]
...

Ys[M1 + P − 1] Ys[M1 + P ] . . . Ys[M1 + P + Q − 2]

⎞⎟⎟⎠ (4.9)

For simplicity, we have constructed Ys using only the coefficients with positive
indices, while the method can be extended to include the coefficients with nega-
tive indices as well, similarly to the approach from Section 2.5.2. In the absence
of noise, the elements of the matrix Ys are given by

Ys[p, q] =
L∑

l=1

alz
M1
l zp+q

l = ãlz
p+q
l , 0 ≤ p ≤ P − 1, 0 ≤ q ≤ Q − 1. (4.10)

where zl = e−jω0tl are the signal poles and ãl = alz
M1
l . Therefore, as already

discussed in Chapter 2, one possible decomposition of the matrix Ys is given
by Ys = USVH , with the following matrices U, S and V,

U =

⎛⎜⎜⎝
1 1 1 . . . 1
z1 z2 z3 . . . zL
...

zP−1
1 zP−1

2 zP−1
3 . . . zP−1

L

⎞⎟⎟⎠ , (4.11)

S = diag ( ã1 ã2 ã3 . . . ãL ) , (4.12)

V =

⎛⎜⎜⎝
1 1 1 . . . 1
z∗1 z∗2 z∗3 . . . z∗L
...

z∗1
Q−1 z∗2

Q−1 z∗3
Q−1 . . . z∗L

Q−1

⎞⎟⎟⎠ . (4.13)

Clearly, U, S and V have the same structure as in Section 2.3.1, except that
the diagonal elements of S are now given by ãl = alz

M1
l . Therefore, in order to

extract the unknown signal poles, we can exploit the following shift-invariant
subspace property

U = U · Φ or V = V · ΦH (4.14)

where Φ is a diagonal matrix having zl’s along the main diagonal. Once the
signal poles have been estimated, the coefficients al can be found as a least-
squares solution to (4.6).

Following the discussion from Chapter 2, when Ys is decomposed using the
SVD, that is,

Ys = UsSsVs
H + UnSnVn

H , (4.15)

one will not obtain the same matrices U, S and V as in (4.11)-(4.13). However,
the shift-invariance property will hold as well, whereas the only difference is that
the signal poles should be now estimated as the eigenvalues of the operator that
maps Us onto Us (or Vs onto Vs). In order to keep this chapter self-contained,
in the following, we briefly summarize the subspace algorithm.
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Algorithm outline

1. Given the set of the coefficients Ys[n], construct a P ×Q matrix Ys as in
(4.9), where P, Q ≥ L.

2. Compute the singular value decomposition of Ys as in (5.45), and ap-
proximate the noiseless data matrix with a rank L matrix, using only L
principal components, that is,

Ys ≈ UsSsVs
H . (4.16)

3. Estimate the signal poles zl = e−jω0tl by computing the eigenvalues of a
matrix Z, defined as

Z = Us
+ · Us (4.17)

Alternatively, if Vs is used in (4.17) instead of Us, one would estimate
complex conjugates of zl’s.

4. Find the coefficients al as a least-squares solution to (4.6).

Clearly, by considering the frequency domain representation of the signal,
we have converted the nonlinear estimation problem into the simpler problem
of estimating the parameters of a linear model. Nonlinearity is postponed for
the step where the information about the time delays is extracted from the
estimated signal poles [65]. However, we have avoided the estimation of the
covariance matrix in the first place, which generally requires a larger data set
and represents a computationally demanding part in other methods [4] [58]. By
avoiding this step, we can allow for reduced sampling rates and lower computa-
tional requirements and yet obtain the same estimation performance.

Finally, we should note that since we are estimating the signal parameters
from the coefficients Ys[n] = Y [n]/S[n] (where S[n] are the DFT coefficients
of the transmitted pulse), in general, noise will no longer be white. However,
since we are using only a portion of the signal bandwidth, we can estimate the
parameters from the frequency band where the power spectral density of the
transmitted signal is nearly flat2, thus having the assumption on white noise still
valid. Otherwise, one can use the weighting technique developed in Section 3.3.1,
as one possible method of ”noise whitening” prior to estimation. In particular,
instead of considering the original data matrix Ys, one can consider another,
weighted matrix AYsB, where the matrices A and B are chosen such that
the entries of the new data matrix have a uniform and minimum variance. As
already discussed in Section 3.3.1, one possible choice for A and B is given by,

A[i, i] =
1

1
Q

∑Q−1
q=0 S[q + i]−1

, i = 0, . . . , P − 1, (4.18)

B[j, j] =
1

1
P

∑P−1
p=0 A[p, p]S[p + j]−1

, j = 0, . . . , Q − 1. (4.19)

We can next use the singular value decomposition of the new data matrix,
and reduce the effect of noise by extracting L principal components UsSsVs

H .
2In systems that are properly designed, this is always the case.



4.2. Estimating More Realistic Channel Models 57

Once the principal components have been computed, one can compensate for
the effects of A and B by constructing a new, denoised data matrix Ysd as
Ysd = A−1UsSsVs

HB−1, from which the signal poles should be estimated.
As already discussed in Chapter 2, in the case when the signal contains

closely spaced components, one can improve the resolution performance of the
subspace method (without increasing the computational complexity), by ex-
ploiting the shift-invariance property in a different way, specifically,

Us
d

= Usd
· Φd and Vs

d
= Vsd

· ΦHd
(4.20)

where (·)d
and (·)

d
denote the operations of omitting the first d rows and last d

rows of (·) respectively. In this case, the matrix Φd has elements zd
l = e−jω0dtl

on its main diagonal, meaning that the effective separation among the estimated
time delays is increased d times. Another way for improving the resolution capa-
bilities would be to construct the data matrix in a different way, by interleaving
the rows (or columns) of the original data matrix Ys. Both methods are de-
scribed in more detail in Section 2.5.1.

In Section 4.3, we will discuss further modifications of the framework, which
can result in improved numerical performance by estimating the channel from
multiple bands.

4.2 Estimating More Realistic Channel Models

4.2.1 Theory

We will now extend our analysis to the more complex case of a channel that
takes into account certain bandwidth-dependent properties. Namely, as a result
of the very large bandwidth of UWB signals, components propagating along
different propagation paths undergo different frequency selective distortion and
a more realistic channel model for UWB systems is of the form [16]

h(t) =
L∑

l=1

alpl(t − tl) (4.21)

where pl(t) are different (normalized) pulse shapes that correspond to different
propagation paths. In this case, the DFT coefficients computed from a bandpass
version of the received signal can be expressed as

Y [n] = S[n]
L∑

l=1

Pl[n]ãle
−jnω0tl + N [n] (4.22)

where Pl[n] are now unknown coefficients. Recall that ω0 = B
N−1 and ãl =

ale
−jM1ω0tl . Clearly, in order to completely characterize the channel, we need

to estimate the al’s and tl’s as well as all the coefficients Pl[n], which, in general,
requires a non-linear estimation procedure. However, one possible way to obtain
a closed form solution is to approximate the coefficients Pl[n] with polynomials
of degree D ≤ R − 1, that is,

Pl[n] =
R−1∑
r=0

pl,rn
r (4.23)
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Equation (4.22) now becomes

Y [n] = S[n]
L∑

l=1

ãl

R−1∑
r=0

pl,rn
re−jnω0tl + N [n] (4.24)

By denoting cl,r = ãlpl,r, Ys[n] = Y [n]/S[n] and Ns[n] = N [n]/S[m], we obtain

Ys[n] =
L∑

l=1

R−1∑
r=0

cl,rn
re−jnω0tl + Ns[n] (4.25)

The problem of estimating the parameters cl,r and tl from Ys[n] is now
equivalent to the one we considered in the previous chapter (Section 3.2.2),
that is, the problem of estimating the parameters of piecewise polynomials. In
order to derive a closed-form subspace solution to this problem, we have first
considered the annihilating filter approach, in particular, we have seen that the
annihilating filter for Ys[n] will have multiple roots at zl = e−jω0tl ,

H(z) =
L∏

l=1

(1 − e−jω0tlz−1)R =
RL∑
k=0

H [k]z−k. (4.26)

Using the result on equivalence between the subspace and annihilating filter
solutions, stated in Proposition 1 (Section 2.3.2), one can develop a subspace-
based estimator, which we briefly summarize in the following.

4.2.2 Algorithm outline

1. Given a set of coefficients Ys[m], construct an M × N matrix data X as
in (2.19), where M, N ≥ RL.

2. Compute the singular value decomposition of X, that is, Ys = USVH .
Find RL principal left and right singular vectors, Us and Vs, as the
singular vectors corresponding to the K largest singular values of Ys.

3. Estimate the signal poles zl = e−jω0tl by computing the eigenvalues of a
matrix H, defined as

H = Us
+ ·Us. (4.27)

Alternatively, if Vs is used in (4.27), one would estimate complex conju-
gates of zk’s. While in the noiseless case one should find RL eigenvalues,
each of multiplicity L, in the presence of noise, it is more desirable to
approximate the signal poles with the eigenvalues of H that are closest to
the unit circle.

4. Find the coefficients ck as a least-squares solution to the Vandermonde
system (2.7), that is,

Ys[n] =
L∑

l=1

R−1∑
r=0

cl,rn
re−jnω0tl + Ns[n].
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At this point, it is important to note that the reconstruction of the pulse
shapes from the set of estimated coefficient cl,r must be done carefully. In [50],
the pulse shapes are reconstructed from the estimated lowpass version of the
signal, using the polynomial approximation (4.23). This can create ripples in the
reconstructed signal due to the Gibbs phenomenon. Similarly, reconstructing
the signal from a larger set of DFT coefficients, obtained by spectral extrapola-
tion from (4.23), is often numerically unstable. A conventional way to treat this
problem is to use a less abrupt truncation of the DFT coefficients by appropri-
ate windowing [57]. One possible solution is to do weighting of the extrapolated
DFT coefficients with an exponentially decaying function. This can significantly
improve the accuracy of reconstruction, as we will show in Section 4.6.

4.3 Improvements of the Subspace Method

4.3.1 Filter bank approach

So far we have considered only a low-dimensional subspace of the received signal
and all the methods were developed under the assumption that we have access
to consecutive DFT coefficients of the signal. While in the noiseless case it is
possible to estimate the parameters from any subspace of appropriate dimension,
in the presence of noise the best performance of our algorithm is expected when
the channel is estimated from a frequency band with highest signal-to-noise
ratio. An alternative approach would be to estimate the channel from a larger
subspace, using a filter bank at the receiver, where each subband is sampled at
a rate determined by the filter bandwidth. The set of coefficients Ys[n] is then
computed separately for each subband and combined to form the matrix Ys in
(4.9), or to compute the annihilating filter coefficients in (2.14). An obvious
advantage of this approach is that a larger data set is used for estimation,
which results in improved numerical performance, yet at the expense of increased
computational and power requirements.

In the case when the channel parameters are estimated from adjacent sub-
bands, the algorithm presented in Section 2.3.1 remains essentially the same,
since we have access to consecutive coefficients Ys[n]. A more interesting case,
and potentially more important in practice, is when the parameters are esti-
mated from bands that are not necessarily adjacent. For example, if the noise
level in certain bands is relatively high, or if some bands are subject to strong
interference, it is desirable to estimate the channel by sampling only those bands
where SNIR (signal-to-noise-plus-interference ratio) is sufficiently high. We will
show that our developed algorithms can be adapted rather simply to handle this
case.

4.3.2 Estimation from non-adjacent bands

Consider first the channel model given by (4.1). For simplicity, we will analyze
the case when the channel parameters are estimated by sampling only two non-
adjacent bands B1 = (M1ω0, N1ω0) and B2 = (M2ω0, N2ω0), while the same
approach can be generalized to the case with multiple frequency bands. Let
Y [n] be the DFT coefficients of the received signal corresponding to the bands
B1 and B2, and let Ys[n] = Y [n]/S[n] (assuming again that this division is
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well-conditioned). Under the above assumptions, the noiseless coefficients Ys[n]
are given by Ys[n] =

∑L
l=1 alz

n
l , where n ∈ [M1, N1] ∪ [M2, N2]. Next define a

block-Hankel data matrix Ys as

Ys =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ys[M1] Ys[M1 + 1] . . . Ys[M1 + Q − 1]
...

Ys[M1 + P1 − 1] Ys[M1 + P1] . . . Ys[M1 + P1 + Q − 2]
Ys[M2] Ys[M2 + 1] . . . Ys[M2 + Q − 1]

...
Ys[M2 + P2 − 1] Ys[M2 + P2] . . . Ys[M2 + P2 + Q − 2]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.28)

In the noiseless case, the matrix Ys can be written as Ys = USVH , where U,

S, and V are now given by

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

zM1
1 zM1

2 zM1
3 . . . zM1

L
...

zM1+P1−1
1 zM1+P1−1

2 zM1+P1−1
3 . . . zM1+P1−1

L

zM2
1 zM2

2 zM2
3 . . . zM2

L
...

zM2+P2−1
1 zM2+P2−1

2 zM2+P2−1
3 . . . zM2+P2−1

L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.29)

S = diag ( a1 a2 a3 . . . aL ) , (4.30)

V =

⎛⎜⎜⎝
1 1 1 . . . 1
z∗1 z∗2 z∗3 . . . z∗L
...

z∗1
Q−1 z∗2

Q−1 z∗3
Q−1 . . . z∗L

Q−1

⎞⎟⎟⎠ . (4.31)

Clearly, the matrix V has the same Vandermonde structure as in (2.21), meaning
that the shift-invariance property (2.25) holds in this case as well, that is, V =
V · Φ, where Φ is the diagonal matrix having zl’s along the main diagonal.
Therefore, one can use the algorithm described in Section 2.3.1 to estimate the
signal poles zl’s from V, or alternatively, from the right singular vectors of Ys.
However, a similar approach can also be used to estimate the poles from the left
singular vectors. This is the case of interest when the number of rows in the data
matrix Ys is larger than the number of columns, which may come about as a
result of sampling multiple frequency bands that are relatively narrow compared
to the signal bandwidth. Namely, the key is to observe the following property
of the matrix U

U = U ·Φ (4.32)

where (·) stands for the operation of omitting the rows 1 and P1 +1 of (·) , and
similarly, (·) denotes the operation of omitting the rows P1 and P1 + P2 of (·).
That is, the shift-invariance property can be exploited in this case as well, while
the only modification in the developed algorithm is that the matrices U and U
are constructed by removing the first and the last row respectively from each
block of U.

Therefore, we can state the following proposition:
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Proposition 4.1 Consider a set of coefficients Ys[n] given by Ys[n] =
∑L

l=1 alz
n
l ,

where n ∈ [M1, N1] ∪ [M2, N2]. Define a block-Hankel data matrix Ys as in
(4.28), and let Ys = USVH denote one possible decomposition of Ys, with S
being an L × L matrix. Then the following holds:

1. Eigenvalues of the matrix Z = U+ · U are identical to the signal poles
{zl}L

l=1.

2. Eigenvalues of the matrix Z1 = V+ · V are identical to the complex
conjugates of the signal poles, that is, {z∗l }L

l=1.

When there is additive noise, one should first extract the principal compo-
nents by computing the singular value decomposition of Ys (5.45), and then
estimate the signal poles zl = e−jω0tl as eigenvalues of a matrix Z, defined as

Z = Us
+ · Us (4.33)

Alternatively, we could define Zc as

Zc = Vs
+ ·Vs (4.34)

in which case the eigenvalues of Zc are complex conjugates of zl’s.
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Figure 4.2: Estimation from multiple bands: receiver block diagram

A block diagram of the estimator where multiple bands are used for estima-
tion is illustrated in Figure 4.2.

4.4 Numerical Performance and Complexity

4.4.1 Analysis of noise sensitivity

Part of the analysis on numerical performance of the subspace approach has
been already presented in Chapter 2 (Section 2.4). In this section, we give
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exact expressions for the MSE of the frequency estimate in the case of a single
exponential (with amplitude a1), which, in our framework, corresponds to the
estimate of the time delay t1 of the dominant path.

Consider first the subspace-based approach from Section 2.3.1. Let the data
matrix Ys be of size P × Q, and let N = P + Q − 1 be the total number of
DFT coefficients Ys[n] used for estimation. Recall that the coefficients Ys[n]
are obtained from the bandpass version of the received signal y(t), that is,
Ys[n] = Y [n]/S[n], n ∈ [N1, N1 + N − 1] (2.7). If we define ω1 = ω0t1, and
assuming that the signal and noise are uncorrelated, the MSE of the state space
approach can be expressed as [32]

E{∆ω2
1} ≈

⎧⎨⎩
1

Q(N−Q)2
σ2

n

|a1|2
N∑

n |S[n]|2 , for Q ≤ N/2
1

Q2(N−Q)
σ2

n

|a1|2
N∑

n |S[n]|2 , for Q > N/2
(4.35)

where σ2
n is noise variance. Note that the error is inversely proportional to the

SNR at the output of the bandpass filter, defined as

SNR =
|a1|2
σ2

n

∑
n |S[n]|2

N
. (4.36)

Therefore, for a given bandwidth of the filter, it is desirable to estimate the
channel from a frequency band where the SNR is highest. The optimum per-
formance is then achieved when Q = N/3 or Q = 2N/3, resulting in the MSE
of time delay estimation

E{∆t21} ≈ 1
ω2

0

27
4N3

1
SNR

(4.37)

This is very close to the Cramer-Rao bound (CRB) [77], given by

CRB =
1
ω2

0

6
N3

1
SNR

(4.38)

which indicates desirable numerical performances of the state space approach.
Similar performance can be achieved with the annihilating filter method [32],
with an MSE of the form

E{∆ω2
1} ≈

{
2(2Q+1)

3(N−Q)2Q(Q+1)
1

SNR , for Q ≤ N/2
2(−(N−Q)2+3Q2+3Q+1)

3(N−Q)Q2(Q+1)2
1

SNR , for Q > N/2
(4.39)

where in this case, Q represents the polynomial degree. As already mentioned
in Chapter ??, a choice of the polynomial degree directly affects the estimation
performance, and the minimum MSE is achieved for Q = N/3 or Q = 2N/3,
leading to

E{∆t21} ≈ 1
ω2

0

9
N3

1
SNR

. (4.40)

At this point, it is worth noting that expressions for performance bounds
(4.37), (4.38) and (4.40), are obtained using the first order perturbation analysis
and are generally valid only for medium to high signal-to-noise ratios. Still, these
results give us a good indication as to the performance of the proposed methods
at different sampling rates. That is, since the root mean square error (RMSE)
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for the time delay estimation is on the order of O(1/N3/2), by decreasing the
sampling rate K times, RMSE increases by a factor of (approximately) K3/2.
Specifically, the following general relation between the RMSE of a subsampled
estimator (RMSEss) and the RMSE of a Nyquist-sampled estimator (RMSEnq)
holds for all the considered methods,

RMSEss ∼ RMSEnqK
3/2

(
SNRnq

SNRss

)1/2

(4.41)

where SNRnq denotes the overall signal-to-noise ratio, while SNRss is the signal-
to-noise ratio at the output of the corresponding bandpass filter. Clearly, even
though the SNR after filtering may increase, the performance of a subsampled
estimator is expected to degrade, due to a smaller data set used for estimation.
However, in Section 4.6, we will show that in problems encountered in practice,
it is possible to obtain high-resolution estimates with sub-Nyquist sampling
rates. Finally, note that equation (4.41) implies that the performance bounds
of subsampled state space or annihilating filter methods are again very close to
the CRB of a subsampled ML estimator.

4.4.2 Computational complexity and alternative solutions

A major computational requirement for all the developed algorithms is associ-
ated with the singular value decomposition step, which is an iterative algorithm
with computational order of O(N3) per iteration. Often, however, we are in-
terested in estimating the parameters of only a few strongest paths, therefore,
computing the full SVD of the data matrix Ys is not necessary. Alternatively,
we can use some simpler methods to find principal singular vectors, which have
lower computational requirements and converge very fast to the desired solution
[19] [27]. We first give an outline of the Power method [27], that can be used
to compute only one dominant right (or left) singular vector of Ys. This can
be of interest for initial synchronization or in applications such as ranging or
positioning. Later, we present its extended version applicable to the general
case of estimating Md > 1 principal singular vectors.

Power Method

Consider a matrix F = YsYs
H of size P×P , and suppose that F is diagonizable,

that is, Λ−1FΛ = diag(λ1, . . . , λP ) with Λ = [y1, . . . ,yP] and |λ1| > |λ2| ≥
. . . |λP |. Given y(0), the Power method produces a sequence of vectors y(k) in
the following way:

z(k) = Fy(k−1)

y(k) = z(k)/‖z(k)‖2 (4.42)

The method converges if λ1 is dominant and if y(0) has a component in the
direction of the corresponding dominant eigenvector y1. It is easily verified
that y1, . . . ,yP are the left singular vectors of Ys, therefore, once the principal
singular vector y1 has been estimated, the signal pole z1 corresponding to the
strongest signal component is given by z1 = y1

+y1. A potential problem with
this method is that its convergence rate depends on |λ2/λ1|, a quantity which
may be close to 1 and thus cause slow convergence. Improved versions of the



64 Chapter 4.

algorithm which overcome this problem are discussed in [19]. Note that the
power method involves only simple matrix multiplications and has a computa-
tional order of O(P 2) per iteration.

Orthogonal Iteration

A straightforward generalization of the power method can be used to compute
higher-dimensional invariant subspaces, that is, to find Md > 1 dominant sin-
gular vectors. The method is typically referred to as Orthogonal iteration or
Subspace iteration and can be summarized as follows.

Given a P ×Md matrix W(0), the method generates a sequence of matrices
W(k) through the iteration

Z(k) = FW(k−1) (4.43)

W(k)R(k) = Z(k) (Q − R factorization) (4.44)

The computational complexity of the method is on the order of O(P 2Md) per
iteration, and clearly, when Md = 1 the algorithm is equivalent to the power
method. In practice, F is first reduced to upper Hessenberg form (that is, F is
zero below the first subdiagonal) and the method is implemented in a simpler
way, avoiding explicit Q − R factorization in each iteration. A more detailed
discussion on this topic can be found in [19].

4.5 Low-Complexity Rapid Acquisition in UWB Lo-
calizers

4.5.1 System model

One of the most interesting applications of our framework can be found in
ultra-wideband transceivers intended for low-rate, low-power indoor wireless
systems, for example, in systems used for precise position location. Such UWB
transceivers, called localizers, have already been developed [25] and they use low
duty-cycle periodic transmission of a coded sequence of impulses to ensure low-
power operation and good performance in a multipath environment. Yet, rapid
synchronization still presents the most challenging part in the transceiver design.
Current solutions are still analog and use a cascade of correlators to perform
exhaustive search through all possible code positions, which is inherently time
consuming. A similar architecture, based on a “mostly digital” conception, is
proposed in [22], where sampling is achieved using an A/D converter designed
to run at 2GHz. In addition to the high sampling rates, implementation of
the cascade of correlators can take up to 30% of the circuit area and tends to
consume a major amount of the total power. Therefore, developing alternative
methods that would allow for faster acquisition and lower power consumption
is still an open problem.

Our previous results can be directly applied to the problem of timing syn-
chronization in such systems, by modeling the received noiseless signal y(t) as
a convolution of L delayed, possibly different, impulses with a known coding
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sequence g(t), that is,

y(t) =
L∑

l=1

alpl(t − tl) ∗ g(t) (4.45)

As y(t) is a periodic signal, its spectral coefficients are exactly given by

Y [n] =
L∑

l=1

alPl[n]G[n]e−jnωctl (4.46)

where ωc = 2π/Tc, while Tc denotes a cycle time. If we use the polynomial ap-
proximation (4.23) of the spectral coefficients Pl[n], the total number of degrees
of freedom per cycle is 2RL. Therefore, the signal parameters can be estimated
by sampling the signal uniformly at a sub-Nyquist rate, using the method pre-
sented in Section 4.2. Note that unlike the conventional techniques [22] [25],
our approach does not require prior knowledge of the transmitted or received
pulse shape.

4.5.2 Two-step estimation

Another advantage of our framework in ranging/positioning applications is that
it allows for a “multiresolution” approach, that is, one can first obtain a rough
estimate of the sequence timing, by taking uniform samples at a low rate over the
entire cycle. Later, precise delay estimation can be carried out by increasing the
sampling rate, yet sampling the received signal only within a narrow time win-
dow where the signal is present. The rationale for using the two-step approach
is that in such systems a sequence duration Ts typically spans a small fraction
of the cycle time Tc (e.g. less than 20%). As a result, all search-based methods
[22] [25] [30], require a very long acquisition time and apparently “waste” power
in sampling and processing time slots where the signal is not present.

A natural question arising from our discussion is how much one can reduce
computational and power requirements using the two-step approach. In order
to answer this question, consider the following scenario. Assume that the signal
is first sampled at a low rate Nl over the entire cycle, and the Power method is
used to achieve coarse synchronization. Assume next that the signal is sampled
at a higher rate Nh (Nh is still below the Nyquist rate Nn) over a narrow time
window of duration (roughly) Ts, and that Md dominant signal components
are estimated using the method of Orthogonal iteration. Since we are mostly
interested in the low SNR regime (SNR < 0dB), a typical range for Nl is between
Nn/40 and Nn/20, while Nh takes on values between Nn/10 and Nn/2.

Table 4.1: Comparison of different acquisition algorithms: computational complex-
ity, power consumption and the number of sampling cycles

Method Two-step approach Subspace method Matched filter
coarse synch. fine synch.

Complexity O((NlTc)2) O(Md(NhTs)2) O(Md(NhTc)2) O((NnTc)2)
Power cons. ∼ NlTc ∼ NhTs ∼ NhTc ∼ NnTc

# cycles Nc = 2 Nc = 1 Nc ∼ NnTc/Kcorr
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In Table 4.1, we list the computational complexity, power consumption of
A/D converters and the number of sampling cycles required to acquire the signal,
for the following methods: the two-step algorithm, the subspace-based approach
from Section 4.1.3, assuming uniform sampling at the rate Nh during the entire
cycle, and the matched filter approach [22], with a cascade of Kcorr correlators
working at the Nyquist sampling rate Nn. Note that we have considered only
the power consumption associated with A/D conversion, assuming a linear de-
pendence on the sampling frequency [15], while a more precise analysis should
also take into account the power consumption due to processing.

The benefits of the two-step approach are obvious: as the ratio Tc/Ts in-
creases, the computational and power requirements can be reduced significantly.
For example, when Nl = Nn/40, Nh = Nn/4, Md = 1 and Tc/Ts = 10, the
two-step approach reduces complexity of the original subspace method approx-
imately by a factor of 50, while power consumption is reduced by a factor of
5. Similarly, as Nh decreases, the advantages of the subspace method over the
matched filter approach become more evident. Also note that due to the search-
based nature of the matched filter method, it requires a much longer acquisition
time compared to the other two approaches, where it suffices to sample at most
two signal cycles. In practice, in the low SNR regime, it is desirable to aver-
age the samples from multiple cycles in order to increase the effective SNR and,
therefore, improve the numerical performance. While this does not have a major
effect on the computational requirements, power consumption increases linearly
with the number of averaging cycles. Thus, a good choice of the number of cycles
depends on power constraints, a desirable estimation precision and acquisition
time. Note that for the two-step approach, the overall performance improves
by averaging the samples during the second phase only, when the fine synchro-
nization takes place. During the first phase, it is useful to average the samples
only if the processing gain is not sufficiently high to allow for coarse acquisition
from a subsampled signal, while it does not affect the overall performance, as
we will show in the sequel.

4.6 Simulation Results

In this section, we show some simulation results that illustrate the performances
of the proposed algorithms. All results are based on averages over 500 trials,
each with a different realization of additive white Gaussian noise. We consider
an UWB system where a coded sequence of UWB impulses is periodically trans-
mitted, while coding is achieved with a PN sequence of length 127. That is, the
n-th transmitted pulse is multiplied by +1 or -1, according to the n-th chip in
the PN sequence. Since we will be considering discrete time signals, time will be
expressed in terms of samples, where one sample corresponds to the period of
Nyquist-rate sampling. The relative time delay between the transmitted pulses
(i.e. the chips in the sequence) is assumed to be 20 samples, while the sequence
duration Ts spans approximately 20% of the cycle time Tc.

4.6.1 Timing performance

We first consider the case of a channel model given by (4.1), assuming six prop-
agation paths with one dominant path (containing 70% of the total power),
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Figure 4.3: System model (a) The transmitted (single) UWB pulse is assumed to have an
ideal first-derivative Gaussian shape. We considered the channel model (4.1), with six propagation
paths and one dominant path (containing 70% of the total power). The received pulse is made
up of six attenuated and delayed replicas of the transmitted pulse. (b) A coded sequence of 127
UWB impulses (red) is periodically transmitted over multiple cycles, while the sequence duration
spans approximately 20% of the cycle time Tc. Coding is achieved with a PN sequence of length
127, and the relative delay between the transmitted pulses is 20 samples. The received signal
(blue) is dominated by noise. In this case, the received signal-to-noise ratio is SNR=-15dB.

as illustrated in Figure 4.3(a). The transmitted UWB pulse is an ideal first-
derivative Gaussian impulse, while the duration of the impulse is approximately
Tp = 5 samples. The received noiseless sequence and a received noisy signal
within one cycle are shown in Figure 4.3(b). We first analyze the timing es-
timation performance of the subspace method developed in Section 4.1.3, and
this for different sampling rates as well as for various values of the received SNR
(defined here as the ratio between the energy of the sequence in one cycle and
a power spectral density of noise). The root-mean square errors (RMSE) of
time delay estimation for the dominant component are shown in Figure 4.4(a).
The results indicate that the method yields highly accurate estimates (that is,
with a sub-chip precision) for a wide range of SNR’s, and this with sub-Nyquist
sampling rates. For example, with the sampling rate of one fifth the Nyquist
rate (Ns = Nn/5) and SNR=-10dB, the time delay along the dominant path
can be estimated with an RMSE of approximately 0.5 samples. The timing
performance of the SVD-based algorithm is compared with the results obtained
using a simpler approach based on the Power method. The two considered
methods yield essentially the same RMSE, and obviously, the performance of
the algorithms improves as the sampling rate increases.

In Figure 4.4(b), we compare the performances of the annihilating filter
method and the subspace-based method. We assume that the sampling rate is
Ns = 0.2Nn and plot the RMSE for different values of a parameter Q, which
denotes the polynomial degree (annihilating filter method), or alternatively, the
number of columns in the data matrix Ys (subspace method). The two methods
have very similar performances, and in general, the good choice for Q is N/10 <
Q < 9N/10. However, the choice of Q directly affects the complexity of the
polynomial method, as it requires computing Q zeros in order to extract only one
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Figure 4.4: Timing recovery in UWB systems (a) Root-mean square error (RMSE)
of delay estimation (in terms of number of samples) vs. SNR, for the case with one dominant
path. We compare performances of the SVD-based algorithm and the Power method for several
values of the sampling rate Ns. Nn denotes the Nyquist rate. (b) RMSE of t-delay estimation
(SNR=0dB) for the annihilating filter and the SVD-based method, and this for different values of
Q, which denotes the polynomial degree (annihilating filter method) or the number of columns in
the data matrix Ys (SVD-based method). N is the total number of samples used for estimation.

signal pole. As already discussed in Section 4.1.3, the subspace-based approach
avoids the problem of overmodeling and is computationally more efficient.

We next consider the same channel model (4.1), yet with two dominant com-
ponents, each containing 40% of the total power. RMSE of time delay estimation
over the dominant paths versus the relative delay between the two components
is shown in Figure 4.5(a), for the case when SNR=-5dB and the sampling rate is
Ns = Nn/5. We compare the results obtained with the original SVD-based algo-
rithm and its modified version from Section 4.1.3, equation (4.20), referred to as
subspace-shifting method (see Chapter 2, Section 2.5.1). The results are shown
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Figure 4.5: Timing recovery: the case with two dominant paths (a) RMSE of
delay estimation of the two dominant components vs. relative time delay (i.e. peak-to-peak
delay) between the pulses. We show the performance of the original subspace algorithm (d = 1)
and the modified (subspace-shifting) algorithm from Section 4.1.3 (d = 8, 12, 16), assuming that
Ns = Nn/5 and SNR = −5dB. (b) RMSE of delay estimation vs. received SNR, and this
for the original algorithm (d = 1) and the subspace-shifting method (d = 8). The sampling
rate is Ns = Nn/5, while the relative delay between the dominant components equals the pulse
duration. In both cases, we plot the RMSE obtained with the SVD-based method and the method
of Orthogonal iteration.

for different values of the parameter d, which determines the effective separation
between the estimated time delays. Obviously, the modified method yields by
an order of magnitude better resolution performance. Furthermore, as the time
delay of the second component relative to the first decreases below the pulse
duration, the performance of the original method degrades rapidly, while the
modified algorithm can alleviate this problem by increasing the value of d. For
example, when d = 12, it is possible to resolve the two components even when
the relative (peak-to-peak) time delay between the pulses is a fraction of the
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pulse duration Tp. In Figure 4.5(b), we show the delay estimation performance
of the two considered methods versus received SNR, assuming that the relative
delay between the dominant components is fixed (i.e. the peak-to-peak spac-
ing equals the pulse duration). Similarly to the previous case, the performance
improvement achievable with the modified algorithm is significant, specifically
for very low SNR’s. It is also interesting to note that the results obtained using
the SVD-based approach and its simplified version using Orthogonal iteration
are almost identical, which makes the latter solution an attractive option in
practice.

4.6.2 Two-step estimation

In Figure 4.6, we show the performance of the multiresolution or two-step delay
estimation. That is, the first step is coarse synchronization, when the signal
is sampled uniformly over the entire cycle at a low rate Nl to obtain a rough
estimate of the sequence timing. The second step is fine synchronization, where
the signal is sampled only within a narrow time window where the signal is
assumed to be present, yet at a higher rate Nh. RMSE of the two-step approach
for Nl = 0.05Nn and Nh = 0.5Nn is shown in Figure 4.6(a). As the subsampling
factor during the first phase is 20, for low values of SNR (that is, less than -5dB),
the samples are averaged over multiple cycles in order to increase the effective
SNR. The error is compared to the RMSE obtained when the signal is sampled
uniformly at a rate Nh = 0.5Nn over the entire cycle. The results indicate that
the two methods yield a very similar performance, however, in this case, the
two-step approach reduces the computational requirements by a factor of 20,
and the power consumption by a factor of 3.3.

In Figure 4.6(b), we plot the RMSE of delay estimation for different com-
binations of Nl and Nh, assuming that the total number of averaging cycles
is 5. The number of cycles during each phase is chosen such that the overall
power consumption remains constant. As already discussed in Section 4.5, the
best performance can be expected when the sampling rate Nh during the second
phase is highest. Namely, by increasing Nh, the number of samples used for fine
synchronization increases, while the effective SNR remains the same, given the
above assumption on the number of averaging cycles. This results in an im-
proved performance (see (4.37)), yet at the expense of increased computational
complexity.

4.6.3 Estimation from non-adjacent bands

We next consider the case of timing estimation from non-adjacent bands. The
received signal is sampled at one one fifth the Nyquist rate, where the frequency
bands B1, B2 and B3 used for estimation are shown in Figure 4.7(a). We
assumed the same noise level in all bands and considered two cases: (a) the
channel is estimated by sampling B1 and B2. (b) The band B2 is subject to a
strong wideband interference, thus the channel is estimated from bands B1 and
B3, using the method described in Section 4.3. The RMSE of delay estimation
for the dominant path vs. received SNR is presented in Figure 4.7(b). The
results obtained for the two analyzed cases are very similar, which suggests
that excluding a few bands does not considerably affect the performance of the
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Figure 4.6: Two-step delay estimation (a) Coarse synchronization is obtained by sampling
the received signal uniformly (over the entire cycle) at a low rate Nl = Nn/20. For low SNR’s (less
than -5dB) the samples are averaged over multiple cycles (dashed line). Once a rough estimate
of the sequence timing is obtained, fine synchronization follows: the signal is sampled only within
a narrow window, yet at a higher rate Nh = Nn/2. RMSE of time delay estimation is compared
to the RMSE obtained with high-rate uniform sampling over the entire cycle. (b) RMSE of delay
estimation for different combinations of Nl (the sampling rate for coarse synchronization) and Nh

(the sampling rate for fine synchronization). Nc denotes the number of averaging cycles during
each phase, chosen such that the total power consumption remains constant.

method, provided that the overall size of the frequency band used for estimation
is approximately the same.

4.6.4 Timing in the case of a non-ideal channel

In Figure 4.8, we show the delay estimation performance for the dominant com-
ponent in the case when received pulses are distorted versions of a transmitted
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Figure 4.7: Estimation from non-adjacent bands (a) Normalized power spectral density
(PSD) of the received pulse and frequency bands used for estimation. (b) The channel is estimated
from bands B1 and B2 (no interference) and the delay estimation performance is compared to the
case when B1 and B3 are sampled (strong interference in B2).

impulse. As in the previous experiments, we assumed that a sequence of 127
coded impulses is periodically transmitted, where a transmitted impulse and a
measured received waveform3 are illustrated in Figure 4.8(a). The normalized
power spectral density and the bands used for estimation are shown in Figure
4.8(b). We used the Power method to estimate the time delay of the dominant
component, and this for three different values of the sampling rate: Ns = 0.1Nn,
Ns = 0.2Nn and Ns = 0.3Nn. The results are compared with those obtained
using the matched filter approach (at Nyquist rate sampling Nn) [22], indicating
that our method is more robust to waveform mismatch. For example, with the
sampling rate of Ns = 0.2Nn, the timing performance is very similar to that of
the matched filter, while for Ns = 0.3Nn, our scheme clearly yields much better
performance.

4.6.5 Higher-rank channel models

We next consider the case of the channel model given by (4.1), assuming L =
70 propagation paths with eight dominant paths (containing 85% of the total
power), as illustrated in Figure 4.9(a). We assumed that the average (peak-to-
peak) time delay between the received dominant components is equal to 2Tp. In
Figure 4.9(b), we show RMSE of delay estimation for the dominant components
vs. SNR. We used the approach presented in Section 4.1.3 (4.20), where the
parameter d is chosen to be d = 30. The method yields highly accurate estimates
in this case as well, and this for a wide range of SNR’s. For example, when
Ns = Nn/4 and SNR = −5dB, the delay of the dominant components can be
estimated with an RMSE of approximately 1 sample.

The effects of quantization on the estimation performance are shown in Fig-
ure 4.9(c). In particular, we considered 4-7 bit architectures and for each case
we plot the RMSE versus received SNR. The results are also compared to the

3The propagation experiment was performed at the Berkeley Wireless Research Center [12]
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Figure 4.8: Timing recovery in non-ideal channels (a) Received waveform (single pulse,
including multipaths) and transmitted pulse. (b) Normalized power spectral density (PSD) of the
received pulse and frequency bands used for estimation. (c) Timing estimation performances of
the SVD-based method and the matched filter approach. The sampling rate for the SVD approach
is Ns = 0.1Nn (the band B1 is sampled), Ns = 0.2Nn (B1 and B2 are sampled) and Ns = 0.3Nn

(B2 and B3 are sampled), while for the matched filter Ns = Nn.

“ideal” case when nb = 32 bits are used for quantization. Clearly, as the number
of bits increases, the overall performance improves. Generally, the 5-bit archi-
tecture already yields a very good performance. Also note that when nb ≥ 5
and the value of SNR is low (e.g. SNR < 0dB), quantization has almost no
impact on the estimation performance. However, as the value of SNR increases,
quantization noise becomes dominant and determines the overall numerical per-
formance.

4.6.6 Joint pulse shape and delay estimation

We next consider the case of the channel model given by (4.21). Specifically, we
assume that a coded sequence of first-derivative Gaussian impulses is periodi-
cally transmitted over a channel with three propagation paths, where a received
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Figure 4.9: Higher-rank channel models (a) Received UWB signal made up of 70 pulses,
with 8 components being dominant (containing approximately 85% of the total power). (b) RMSE
of delay estimation of the dominant components vs. SNR.(c) Effects of quantization on the RMSE
of delay estimation for 4-7 bit receiver architectures. The results are compared to the case when
the number of bits is nb = 32. The sampling rate is one fourth the Nyquist rate (Ns = Nn/4).

(single) UWB signal is made up of three pulses having different shapes. This
is illustrated in Figure 4.10(a), where the received noiseless and noisy UWB
signals for SNR=0dB are shown. The received signal is sampled uniformly over
the entire cycle at one fifth the Nyquist rate and the samples are averaged over
Nc = 5 cycles. We used the subspace method to estimate unknown time delays.
As already pointed out in Section 4.2, the signal poles (and thus the unknown
time delays) can be estimated by choosing L = 3 eigenvalues closest to the
unit circle. Once the time delays of the pulses have been estimated, the corre-
sponding pulse shapes are obtained by polynomial approximation of the DFT
coefficients. In this case, we used a polynomial of degree R = 20, which clearly
yields a very good approximation of the received waveforms. However, by in-
creasing the sampling rate, the performance of the method does not necessarily
improve, since we try to fit more coefficients from frequency bands where noise
dominates the signal. This effect can be seen in Figure 4.10(e). In order to
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overcome this problem, an exponential weighting of the estimated DFT coeffi-
cients is carried out, as discussed in Section 4.2. This can significantly improve
the accuracy of the reconstruction, as can be seen in Figure 4.10(f).

4.7 Application to CDMA systems

The techniques for channel estimation developed in this chapter can be also
used in other systems with bandwidth expansion, such as code division multiple
access (CDMA) systems [88]. Bandwidth expansion in direct sequence (DS)
CDMA systems is accomplished by means of a spreading code, often called a
signature sequence, whose chip rate is much higher than the information signal
bandwidth [20]. While the problems of high sampling rates and the complexity
of channel estimation algorithms in DS-CDMA systems are not as critical as
it was the case with UWB systems, we will show that one can obtain high-
resolution estimates of the channel parameters by sampling the received signal
below the traditional chip rate.

4.7.1 Channel estimation

Consider the simple case of a DS-CDMA system with a single user, operating
over a multipath fading channel with at most L propagation paths. We assume
that the channel varies slowly, i.e. it is considered constant over a channel
estimation window. A received baseband signal y(t) can be thus represented as
a sum of multiple copies of an attenuated and delayed transmitted signals and
noise,

y(t) =
L∑

l=1

als(t − tl) + η(t), (4.47)

where s(t) is a signature sequence of length N assigned to the user, tl denotes
the delay of the signal received along the l-th path, al is the corresponding
complex propagation coefficient that includes channel attenuation and a phase
offset along the l-th path, and η(t) denotes additive white Gaussian noise.

Note that the above expression for the received signal is the same one we
had in the case of UWB signals (4.2), except that in this case s(t) corresponds
to the signature sequence assigned to the user. Therefore, the DFT coefficients
of the received signal are given by

Y [m] =
L∑

l=1

alS[m]e−jmω0tl + N [m], ω0 = 2π/Ts, (4.48)

where S[m] and N [m] denote the DFT coefficients of the signature sequence
and noise respectively. Since the S[m]’s in (4.48) are assumed to be known co-
efficients, the problem of estimating the unknown parameters tl and al from the
set of coefficients Y [m] is now equivalent to the problem of channel estimation
in UWB systems, already discussed in this chapter. Since the received signal
has only 2L degrees of freedom, in the noiseless case, it suffices to use only 2L
coefficients Y [m] to estimate all the unknown parameters. In the noisy case,
the sampling rate should be increased above the critical rate, and the choice
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of the sampling rate depends on a signal-to-noise ratio and the desired estima-
tion precision. However, we will show that for the values of SNR encountered
in practice, the sampling rate required for estimating the time delays with a
sub-chip precision is still below the chip rate.

4.7.2 Joint time delay and angle estimation

One can further extend the above results to the problem of joint delay and
angle estimation using antenna arrays, in order to simultaneously exploit the
space and time domain structure of received multipath signals [64]. Namely,
the use of antenna arrays improves the performance of CDMA receivers in the
spatial domain, by steering beams toward desired users and thus decreasing
the interference power level, while the RAKE receiver attempts the same goal
through temporal operations by coherently combining multipath signals from a
desired user [44] [64] [70] [76].

Consider a uniform linear antenna array system consisting of S omnidirec-
tional elements with equal interelement spacing ∆. We will assume that the
carrier frequency is relatively high compared to the bandwidth of the transmit-
ted signal4 and that a channel is slowly varying. The direction of arrival θl of
the signal received along the l-th path is assumed to be the same for all antennas
in the array. However, there will be a fixed phase difference between signals re-
ceived at each two consecutive elements of the array, given by ejωc

∆sinθl
c = ejφl ,

where ωc denotes the angular frequency of the carrier. The same phase differ-
ence will thus appear between corresponding DFT coefficients of signals received
at each two consecutive elements.

Consider next a set of the DFT coefficients of the received signal, estimated
separately at each antenna, and denote them as Y1[m], Y2[m],...,YS [m]. If we
denote by Ag the antenna gain (assumed to be the same for all antennas), the
coefficients Ys[m] can be expressed as

Ys[m] =
L∑

l=1

ale
−jmω0tlAge

−j(s−1)φl , (4.49)

that is, a linear combination of two-dimensional complex exponentials. Note
that the above equation can be also written in the form

Ys[m] =
L∑

l=1

Ale
−jmω0tle−jsφl , (4.50)

where Al = alAge
−jφl . Therefore, the problem of estimating the delays and

direction of arrivals can be considered as a special case of 2-D harmonic re-
trieval problem. In the case of a separable problem (i.e. when the delays tl are
different or when all the angles φl are different), it would be possible to solve
uniquely for all the unknown parameters by considering the outputs of only two
antennas in the system and using 1-D subspace methods [65] [39]. However,
such an approach may suffer from poor numerical performance for low signal-
to-noise ratios and cannot be used in the non-separable case. Therefore, given

4Note that this assumption is not valid in the case of ultra-wideband signals.
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that the coefficients Ys[m] have the form of a linear combination of 2-D com-
plex exponentials, a more sensible approach is to use 2-D subspace algorithms
for harmonic retrieval (such as MEMP, ACMP, 2-D ESPRIT etc.), which have
better performance, yet at the expense of higher computational complexity. In
Chapter 5, we will discuss the problem of 2-D harmonic retrieval in more de-
tail and describe the ACMP (Algebraic Coupling of Matrix Pencils) algorithm,
which belongs to the class of high-resolution subspace algorithms. At this point,
it is important to note that in order to apply 2-D subspace algorithms success-
fully, the number of antennas S in the array cannot be chosen arbitrarily. The
minimum number of sensors Smin required for a unique solution by most 2-D
methods is Smin = 2L, that is, it depends only on the number of multipaths.

4.7.3 Channel estimation in W-CDMA systems: simulation
results

In the following, we present simulation examples that illustrate the performance
of the channel estimation algorithm in CDMA systems. Figure 4.11 illustrates
the timing synchronization performance of our method for an additive white
Gaussian noise channel, where the spreading is achieved with pseudo-random
sequences of length 511. Figure 4.11 shows a root mean square error of time
delay estimation (normalized to the chip duration Tc) versus the sampling rate.
The error obviously decays fast as the sampling rate increases, and it is thus
unnecessary to resort to chip or fractional sampling rates to obtain precise es-
timates (within a fraction of the chip duration) of the relative time delays.
For example, by sampling the received signal at one fourth of the chip rate,
the average estimation error is less than one tenth of the chip duration (for
Eb/N0 ≥ 7dB), and by further increasing the sampling rate the performance
does not considerably improve. The time delay error in multipath fading chan-
nels is illustrated in Figure 4.11(b), where we assumed that the signal is made
up of 3 components having equal power. The estimation error is somewhat
higher than in the non-fading channel case, however, it is interesting to note
that if there is only one dominant component (with 70% of the total power),
the estimation error is almost the same as in the non-fading channels. This
result also implies that our algorithm is robust to model mismatch. In other
words, it is possible to estimate the parameters of dominant paths precisely as
long as the strongest signal components are incorporated in the system model.
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We next consider the performance of our scheme in the case of a joint an-
gle and delay estimation, where we used a 2-D subspace based algorithm for
harmonic retrieval, the ACMP algorithm to jointly estimate time delays and
direction-of-arrivals of all users. Figures 4.12(a) and 4.12(b) show normalized
delay and angle estimation errors. It is obvious that by increasing the number
of sensors, the angle estimation error decays faster, while by increasing the sam-
pling rate the delay estimation error is improved. Such a behavior is due to the
fact that by increasing the number of antennas we add more information about
the spatial domain structure of the signal, whereas by increasing the sampling
rate we include more information about the time-domain signal structure. The
same conclusions hold for multipath channels, yet all the estimation errors are
somewhat higher.

4.8 Conclusion

We have presented several methods for subspace parameter estimation in ultra-
wideband systems, which are based on the sampling results for certain classes
of parametric non-bandlimited signals, presented in Chapters 2 and 3. Our
approach takes advantage of well-known spectral estimation techniques, requires
lower sampling rate and, therefore, lower complexity and power consumption
compared to existing digital solutions. Besides, it leads to faster acquisition
and allows for identification of more realistic channel models without resorting
to complex algorithms. We specifically considered the application to indoor
wireless networks, where low rates and low power consumption are required.
The developed algorithms can also be used in other UWB applications, primarily
for synchronization and channel characterization purposes, as well as in other
wideband systems, such as wideband CDMA.
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Figure 4.10: Joint pulse shape and delay estimation (a) Received noisy signal (blue)
and the noiseless signal made up of three short pulses having different shapes (red). (b) Estimated
shape of the first pulse. (c) Estimated shape of the second pulse. (d) Estimated shape of the
third pulse. The received signal is sampled at one fifth the Nyquist rate (Ns = Nn/5). We
used a polynomial of order R = 20 to approximate the DFT coefficients of the received signal.
(e) Estimated second pulse in the case when the sampling rate is increased to Nn = Nn/3. No
spectral extrapolation is used. (f) Estimated second pulse from (e) using spectral extrapolation
along with the exponential weighting of the approximated DFT coefficients.
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Figure 4.11: Channel estimation in CDMA systems Average timing synchronization
error (normalized to Tc) in the multiuser case vs. sampling rate. We assumed a non-fading
channel. The signature sequence is of length 511. (d) Comparison of timing estimation errors in
single-path and multipath channels (3 received components of equal power).
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Figure 4.12: Channel estimation in CDMA systems - Joint angle and delay
estimation (a) Normalized angle and delay estimation errors vs. number of sensors in the
antenna array S. The signature sequence assigned to a user is of length 511. (b) Normalized
angle and delay estimation errors vs. sampling rate.



Chapter 5

Sampling Methods for Classes
of Periodic Non-Bandlimited
2-D Signals

In this chapter, we consider possible extensions of our sampling framework to
classes of periodic non-bandlimited 2-D signals that have a finite number of
degrees of freedom, that is, signals with finite complexity. We show that it
is possible to develop exact sampling schemes and reconstruction formulas for
certain classes of such signals, including sets of 2-D Diracs, lines or bilevel
polygons. Similarly to the problem from the 1-D case, the space of signals we
analyze is not a shift-invariant vector space, but rather a union of shift-invariant
spaces of finite dimension [45]. Therefore, we focus on developing exact sampling
schemes for signals with M degrees of freedom that require on the order of M
samples (or at most O(M2) samples), and algorithms that can recover such
signals with high numerical precision.

The outline of the chapter is as follows. In Section 5.1, we review classes of
non-bandlimited two-dimensional signals that will be of interest in the sequel.
In Section 5.2, we consider the problem of sampling a periodic set of M weighted
2-D Diracs and propose a sampling scheme which, in the separable case, allows
for perfect reconstruction from only O(M) samples of the signal. In Section
5.3, we extend the analysis to the non-separable case, and develop a “true”
2-D method that can perfectly reconstruct the signal from O(M2) samples.
A possible extension of these results to the problem of sampling some simple
objects, such as sets of lines or polygons, is addressed in Section 5.4. In Section
5.5, we analyze the problem of estimating the model order and discuss numerical
performance of our methods as well as robustness to model mismatch and noise.
Simulation results that indicate desirable properties both in the deterministic
case and in the presence of noise are given in Section 5.6. Finally, we give a
brief summary of our results in the concluding remarks.

81
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5.1 Problem Statement

In the first two chapters of this thesis, we have shown that one can develop sam-
pling schemes for a large class of parametric non-bandlimited signals, namely,
certain signals of a finite rate of innovation. Examples include streams of Diracs,
non-uniform splines and piecewise polynomials, and the common feature of such
signals is that they allow for a parametric representation with a finite number
of degrees of freedom and can be perfectly reconstructed from a finite set of
samples. The proposed methods were intended for one-dimensional signals, but
when going to higher dimensions, the problem becomes more involved and does
not necessarily allow for direct extension of 1-D results. We will thus consider
the problem of developing exact sampling schemes and reconstruction formulas
for certain classes of parametric non-bandlimited 2-D signals that have a finite
number of degrees of freedom. The sampling setup we are using is shown in
Figure 5.1, where the original 2-D signal g(x, y) is filtered with a smoothing
kernel ϕ(x, y), and a uniform set of samples is taken from the filtered version
gf (x, y) = g(x, y) ∗ ϕ(x, y), that is,

gs(p, q) = < g(x, y), ϕ(x − pTsx, y − qTsy) >, p, q ∈ Z. (5.1)

The above setup is typical for acquisition devices encountered in practice and
the key question is under what conditions one can reconstruct g(x, y) from
gs(p, q). This question is fundamental in multidimensional signal processing,
however, similarly to the 1-D case, the problem we consider differs from standard
problems in 2-D sampling theory in the sense that classes of signals we analyze
do not belong to a single linear space, but rather to a union of linear spaces of
finite dimension.

f sg (p,q)

samplingprefiltering

g (x,y)g(x,y)

A/D

δ (x-p,y-q)
p,q
Σ

ϕh(x,y)=    (-x,-y)

Figure 5.1: Sampling Setup Analog signal g(x, y) is prefiltered with h(x, y) = ϕ(−x,−y)
(anti-aliasing step). The sampled signal is given by gs(p, q) =

∑
p,q∈Z

gf (x, y)δ(x − p, y − q).

There are several important issues that will be addressed in this chapter.
We investigate if it is possible to develop a sampling scheme for a signal with M
degrees of freedom that requires on the order of M samples, and what kernels
ϕ(x, y) allow for such schemes. Another important point is the numerical perfor-
mance of the algorithms, that is, we will be interested in developing techniques
that can recover the signal from a set of its samples with high numerical preci-
sion, regardless of the signal complexity (e.g. the value of the parameter M) or
signal structure. And finally, we expect the algorithms to be computationally
efficient and, if possible, robust to noise and model mismatch. We will show
that, under certain conditions, one can develop methods that satisfy all of the
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above requirements. Some of the techniques we will be using are encountered
in spectral analysis [28]-[39] [69] [74] [81]-[84], or in error correction coding [5]
[6] [53]. The proposed methods, while being more complex than the existing
schemes for bandlimited signals, still offer efficient algorithmic implementations.
We will analyze in detail the case of a signal made up of 2-D Diracs, and discuss
some extensions of the results to the problem of sampling some simple objects,
such as lines and polygons.

5.1.1 2-D Signals of Finite Complexity

A class of signals of finite complexity can be informally defined as a class of 2-D
signals that have a parametric representation with a finite number of degrees of
freedom. Similarly to the 1-D case, where we focused on signals of finite rate of
innovation, the main reason why we consider the sampling problem for such a
class of signals is the fact that one can expect to relate the number of degrees
of freedom of the signal to the minimum sampling density ρ (or the minimum
number of samples) that allows for perfect reconstruction. For example, consider
the simple case of a two-dimensional bandlimited real signal g(x, y), with a
Fourier transform that is nonzero over a finite region R in the frequency space.
If we let 2Bx and 2By represent the widths in the fx and fy directions of the
smallest rectangle that encloses the region R, then appropriately spaced samples
can perfectly represent the signal, i.e.

g(x, y) =
∞∑

m=−∞

∞∑
n=−∞

g(mX, nY )sinc(x/X − m, y/Y − n), (5.2)

where X and Y are such that X ≤ 1
2Bx

and Y ≤ 1
2By

. The above relation
implies that we can think of the bandlimited signal as having 1/X and 1/Y
degrees of freedom per unit of length in the x and y direction respectively,
which correspond to minimum sampling densities ρx and ρy. A more general
form of (5.2) is given by

g(x, y) =
∞∑

m=−∞

∞∑
n=−∞

cmnϕ(
x − xm

X
,
y − yn

Y
), (5.3)

where xm and yn are arbitrary shifts. For example, when ϕ(x, y) = δ(x, y) and
both xn − xn−1 and yn − yn−1 are i.i.d. random variables with exponential
density, then g(x, y) describes a separable 2-D Poisson process. Other examples
of signals of finite complexity include simple lines and polygonal lines, planar
parametric curves as well as some parametric signals whose boundaries have a
finite number of degrees of freedom. We will thus try to exploit the finite number
of degrees of freedom property and develop sampling schemes that allow for a
perfect reconstruction from a finite number of samples.

5.2 Periodic Set of 2-D Diracs in Continuous Space

5.2.1 Fourier series

One of the most basic forms of non-bandlimited signals of finite complexity
is a set of Diracs, that is, one particular realization of a 2-D Poisson process.
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Although this signal has a simple parametric representation, the problem of
extracting its parameters from a set of samples is a more involved task than
in the one-dimensional case. In this section, we present sampling methods for
a periodic set of Diracs in continuous space. Specifically, we will show that
a lowpass approximation of the signal, that is, a projection of the signal onto
the subspace of proper dimension, provides sufficient information for perfect
reconstruction.

Let g(x, y) be a periodic 2-D signal given by

g(x, y) =
∑
p,q

M−1∑
k=0

ckδ(x − pTx − xk, y − qTy − yk), (5.4)

where M is assumed to be known and Tx=Ty=T . Consider the Fourier series
representation of g(x, y)

g(x, y) =
∞∑

m=−∞

∞∑
n=−∞

G[m, n]ejmω0xejnω0y, (5.5)

where ω0 = 2π
T and G[m, n] are the Fourier series coefficients given by

G[m, n] =
1
T 2

∫ T

0

∫ T

0

g(x, y)e−jmω0xe−jnω0ydxdy

=
1
T 2

∫ T

0

∫ T

0

M−1∑
k=0

ckδ(x − xk, y − yk)e−jmω0xe−jnω0ydxdy

=
M−1∑
k=0

1
T 2

∫ T

0

∫ T

0

ckδ(x − xk, y − yk)e−jmω0xe−jnω0ydxdy

=
M−1∑
k=0

1
T 2

cke−jmω0xke−jnω0yk

=
M−1∑
k=0

ake−jmω0xke−jnω0yk ,

that is, a linear combination of M complex exponentials. We will first analyze
the case where the set of Diracs has no common components along one direction,
that is, all xk are distinct (or alternatively all yk have different values), and
present a method that can perfectly recover the signal from O(M) samples.

5.2.2 Annihilating filter approach: the separable case

Consider the Fourier Series coefficients G[m, 0], and G[m, 1], given by equation
(5.6),

G[m, 0] =
M−1∑
k=0

ake−jmω0xk , (5.6)

G[m, 1] =
M−1∑
k=0

ake−jmω0xke−jω0yk =
M−1∑
k=0

Ake−jmω0xk , (5.7)
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where Ak = ake−jω0yk , and define a filter H(z) of order M , having zeros at
zk = e−jω0xk

H(z) =
M−1∏
k=0

(1 − z−1zk) =
M∑
i=0

hiz
−i. (5.8)

Let H = coeff(H(z)) = [1 h1 h2... hM ]. Since G[m, 1] has the form of a weighted
sum of exponentials, i.e. G[m, 1] =

∑M−1
k=0 αkzm

k , the following relation must be
satisfied

H ∗ G[m, 1] = 0, m ∈ Z. (5.9)

In other words, each exponential in G[m, 1] is being zeroed out by one of the
roots of H(z), thus the filter H(z) is the annihilating filter for G[m, 1], and
its zeros uniquely define the set of locations {xk}. A more detailed analysis of
the annihilating filters is given in Chapter 2 and in [74] and [85]. Therefore,
we will only outline the basic steps of the algorithm in the two-dimensional case.

5.2.3 Algorithm outline

• Find the Fourier series coefficients G[m, 0] and G[m, 1], m ∈ [−M, M ],
from a set of samples

ys[p, q] = < g(x, y), ϕ(x − pTsx, y − qTsy) >, p ∈ [0, T/Tsx − 1],
q ∈ [0, T/Tsy − 1],

where ϕ(x, y) is a 2-D sinc sampling kernel1 of bandwidth [−Mω0, Mω0]×
[−ω0, ω0], while the sampling periods Tsx and Tsy are chosen such that
Nsx = T/Tsx ≥ 2M +1 and Nsy = T/Tsy ≥ 2 ·1+1, with {Nsx, Nsy} ∈ N.
Namely, the sample values ys[p, q] are given by

ys[p, q] =
∑
m

∑
n

G[m, n] < ϕ(x − pTsx, y − qTsy), ejmω0xejnω0y >

=
∑
m

∑
n

G[m, n]Φ(mω0, nω0)ejmω0pTsxejnω0qTsy

=
M∑

m=−M

1∑
n=−1

G[m, n]ejmω0pTsxejnω0qTsy ,

where Φ(ωx, ωy) is the Fourier transform of ϕ(x, y) which satisfies

Φ(ωx, ωy) =
{

1, |ωx| ≤ Mω0, |ωy| ≤ ω0

0, otherwise. (5.10)

If the sampling periods Tsx and Tsy satisfy the above requirements, this
system of equations is invertible and will yield a unique solution for G[m, 0]
and G[m, 1], m ∈ [−M, M ].

• Find the filter coefficients hi, i = 1, 2, . . . , M , from a system of equations

H ∗ G[m, 1] =
M∑
i=0

hiG[m − i, 1] = 0. (5.11)

1Note that ϕ(x, y) does not necessarily have to be a periodic function.
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If we let m = 1, 2, ..., M , the above system reduces to

h0G[m, 1] +
M∑
i=1

hiG[m − i, 1] = 0. (5.12)

Assuming without loss of generality that h0 = 1, the filter coefficients hi

can be computed from the Yule-Walker system

M∑
i=1

hiG[m − i, 1] = −G[m, 1], m = 1, 2, ..., M, (5.13)

which has a unique solution if the xk’s are distinct. If that condition is
satisfied, the Fourier series coefficients G[m, 1], m ∈ [−M + 1, M ] provide
sufficient information to solve uniquely for the filter coefficients hi, and
hence for the set {xi} by factorization.

• Solve for the set of pairs (xk, yk) and corresponding weights ak.
Consider the expressions for G[m, 0] and G[m, 1], m ∈ [0, M −1] in matrix
form⎛⎜⎜⎝

G[0, 0]
G[1, 0]

...
G[M − 1, 0]

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 . . . 1

e−jω0x0 . . . e−jω0xM−1

...
. . .

...
e−j(M−1)ω0x0 . . . e−j(M−1)ω0xM−1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
a0

a1
...

aM−1

⎞⎟⎟⎠ .

(5.14)
The above system is a Vandermonde system which yields a unique solution
for the weights ai, provided xi �= xj when i �= j. By a similar argument,
Ai = aie

−jω0yi can be found from the coefficients G[m, 1]⎛⎜⎜⎝
G[0, 1]
G[1, 1]

...
G[M − 1, 1]

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 . . . 1

e−jω0x0 . . . e−jω0xM−1

...
. . .

...
e−j(M−1)ω0x0 . . . e−j(M−1)ω0xM−1

⎞⎟⎟⎠

·

⎛⎜⎜⎝
a0e

−jω0y0

a1e
−jω0y1

...
aM−1e

−jω0yM−1

⎞⎟⎟⎠ . (5.15)

Equations (5.13), (5.14) and (5.15), yield a unique solution for the set {(xk, yk, ak)},
thus we can state:

Proposition 5.1: Let g(x, y) be a periodic set of M weighted 2-D Diracs of
periods Tx = Ty = T in the x and y directions, and assume that g(x, y) does
not contain common components along the x direction. Denote by ϕ(x, y) the
2-D sinc sampling kernel of bandwidth [−Mω0, Mω0] × [−ω0, ω0], and choose
the sampling periods Tsx and Tsy such that Nsx = T/Tsx ≥ 2M + 1 and
Nsy = T/Tsy ≥ 2 · 1 + 1, where {Nsx, Nsy} ∈ N. Then the samples

ys[p, q] = < g(x, y), ϕ(x − pTsx, y − qTsy) >, p ∈ [0, Nsx − 1] q ∈ [0, Nsy − 1],
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are a sufficient representation of g(x, y).

In the case when the coordinates of the Diracs are distinct along the y direction
but not along the x direction, the algorithm remains virtually the same. The
only difference is the use of an alternative sinc sampling kernel of bandwidth
[−ω0, ω0] × [−Mω0, Mω0], while the signal parameters can be found from the
Fourier Series coefficients G[0, n] and G[1, n], n ∈ [−M, M ]. The presented
method thus yields a unique solution by taking only O(M) samples of the signal,
but its numerical stability typically degrades as the number of Diracs increases,
due to the root finding part of the algorithm. Another disadvantage is that the
method fails when the Diracs have common components along both directions,
which also points to numerical instability if the coordinates are very close.

It is worth noting that it is also possible to solve for the signal parameters
from the same set of the Fourier series coefficients using one-dimensional sub-
space methods for harmonic retrieval, as discussed in Chapter 2. However, the
same necessary condition for the success of these methods holds, namely, the
set of Diracs must have no common components along the x or the y direction.
If such is not the case, one possible way of handling this problem is discussed
in the next section.

5.3 Sampling schemes in the non-separable case

The algorithm we described is based on the idea of reducing the two-dimensional
sampling problem to one dimension and using 1-D methods for harmonic re-
trieval. However, we have seen that such an approach imposes certain con-
straints in terms of the locations of the Diracs in the set, i.e. the necessary
condition is that the problem is separable in the x, or alternatively, y direction.
In order to avoid this constraint, it seems natural to try to extend the idea of
annihilating filters to two-dimensions. In other words, if we can find an FIR
filter H(z1, z2) having M zeros at (z1k, z2k) = (e−jω0xk , e−jω0yk), which satisfies
H [m, n] ∗ G[m, n] = 0, then the problem would essentially be equivalent to the
one we discussed in the 1-D case. Yet, it turns out that this approach cannot be
used. The main reason is that in the two-dimensional case, there is no general re-
lationship between the degree of a bivariate polynomial and the number of its ze-
ros. For example, consider a filter H(z1, z2) =

∏M
k=0(1−z−1

1 e−jω0xkz−1
2 e−jω0yk)

which is a 2-D counterpart of the annihilating filter defined in Section 5.2.
H(z1, z2) is a polynomial in z−1

1 and z−1
2 of degree 2M , and satisfies the rela-

tion H [m, n]∗G[m, n] = 0, but has an infinite number of zeros over the complex
field, located at hyperbolas z1z2 = e−jω0(xk+yk). Clearly, the problem in two
dimensions is more involved and a simple extension of the method from the 1-D
case will not lead to the solution.

An alternative way to estimate the locations and weights of Diracs is to
use 2-D subspace methods. Two-dimensional subspace-based algorithms have
been studied extensively in the context of harmonic retrieval, typically for dis-
tinguishing and tracking signals of interest and extracting relevant information
from noisy measurements. In that particular framework, subspace methods are
used with the aim to estimate the signal parameters from noisy data and a model
that approximately fits all the available information is more desirable. We will
prove that in the deterministic case, 2-D subspace methods can be adapted in
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such a way that the exact values of the parameters xi, yi and ai, can be found
from only O(M2) samples of the signal g(x, y).

5.3.1 Subspace-based approach

Consider again the Fourier series coefficients G[m, n], given by (5.6),

G[m, n] =
M−1∑
k=0

ake−jmω0xke−jnω0yk . (5.16)

To make the notation simpler, we can write the above system as

G[m, n] =
M−1∑
k=0

akwm
k zn

k , (5.17)

where wk = e−jω0xk and zk = e−jω0yk . If we let 0 < m ≤ P − 1 and 0 < n ≤
Q − 1, equation (5.17) can be written as G = WAZ, with matrices W , A, and
Z defined as

W =

⎛⎜⎜⎝
1 1 1 . . . 1

w1 w2 w3 . . . wM
...

wP−1
1 wP−1

2 wP−1
3 . . . wP−1

M

⎞⎟⎟⎠ , (5.18)

A = diag ( a1 a2 a3 . . . aM ) , (5.19)

Z =

⎛⎜⎜⎜⎝
1 z1 z2

1 . . . zQ−1
1

1 z2 z2
2 . . . zQ−1

2
...
1 zM z2

M . . . zQ−1
M

⎞⎟⎟⎟⎠ . (5.20)

If the projections of the set of Diracs on the x and the y directions are distinct,
then the rank of the matrix G is equal to M and the values wi and zi can be
obtained from the principal left or right singular vectors of G. If this condition
is not satisfied, the algorithm fails due to the rank deficiency of G. Among
the earliest spectral estimation techniques that addressed this problem was the
MEMP algorithm (Matrix Enhancement and Matrix Pencil) [34]. The method
introduces so-called “enhanced matrices”, both of rank M , from which the sets
{wi} and {zi} could be obtained, yet an additional step is required to form
the correct pairs (wi, zi). This often involves a costly minimization procedure,
making this algorithm unattractive due to its computational cost. In response
to that, there has been a lot of work toward developing high-resolution methods
that would link the estimation problems in both dimensions [28] [69] [81]-[84].
We will show how one such method, the ACMP algorithm (Algebraic Coupling
of Matrix Pencils), can be efficiently applied to our sampling problem. A more
detailed discussion of the method can be found in [81].

5.3.2 Outline of the ACMP algorithm

Let the K(P − L) × L(Q − K) enhanced matrix J be defined as

J =

⎛⎝ G(1,1) G(2,1) . . . G(L,1)

G(1,2) G(2,2) . . . G(L,2)

G(1,K) G(2,K) . . . G(L,K)

⎞⎠ , (5.21)
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where the (k, l)-th block component of J is given by

Jkl = G(l,k) =

⎛⎜⎜⎝
G[l, k] . . . G[l, Q − K − 1 + k]

G[l + 1, k] . . . G[l + 1, Q − K − 1 + k]
...

G[P − L − 1 + l, k] . . . G[P − L − 1 + l, Q − K − 1 + k]

⎞⎟⎟⎠ .

(5.22)
The matrix J can be written as

J = W
′
AZ

′
, (5.23)

where W
′
and Z

′
are generalized Vandermonde matrices

W
′
= (WT

P−L ZdW
T
P−L Z2

dWT
P−L . . . ZK−1

d WT
P−L ) , (5.24)

Z
′
= (ZT

Q−K WdZ
T
Q−K W 2

d ZT
Q−K . . . WL−1

d ZT
Q−K ) . (5.25)

Wd and Zd are M×M diagonal matrices Wd = diag{eiω0xk}, Zd = diag{eiω0yk},
while WP−L and ZQ−K are given by

WP−L =

⎛⎜⎜⎝
1 1 1 . . . 1

w1 w2 w3 . . . wM
...

wP−L−1
1 wP−L−1

2 wP−L−1
3 . . . wP−L−1

M

⎞⎟⎟⎠ , (5.26)

ZQ−K =

⎛⎜⎜⎜⎝
1 z1 z2

1 . . . zQ−K−1
1

1 z2 z2
2 . . . zQ−K−1

2
...
1 zM z2

M . . . zQ−K−1
M

⎞⎟⎟⎟⎠ . (5.27)

Define next a top-left matrix Jtl, obtained by omitting the last row and the
last column of the block components of J , i.e. the top-left matrix Jtl has block
components

Jtl, kl = G(l,k)| = Gl:P−L−2+l, k:Q−K−2+k, (5.28)

where (·)| denotes the operation of deleting the last column of (·), while (·)
denotes the operation of deleting the last row of (·). Define in a similar way top-
right and bottom-left matrices Jtr and Jbl. The outline of the ACMP algorithm
is then

• Compute the singular value decomposition of Jtl.

Jtl = USV H (5.29)

• Find Ctr, Ctl, Cbl and Cbr from

UH(Jtr − µJtl)V = F (Zd − µI)G = Ctr − µCtl, (5.30)

UH(Jbl − µJtl)V = F (Wd − λI)G = Cbl − λCtl. (5.31)
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• Compute the eigenvalue decomposition of a matrix C−1
tl (βCtr +(1−β)Cbl)

C−1
tl (βCtr + (1 − β)Cbl) = G−1TG, (5.32)

where β is a scalar introduced with the aim of avoiding multiple eigenval-
ues.

• Apply the eigentransformation T to C−1
tl Ctr and C−1

tl Cbl to find Zd and
Wd, i.e.

T (C−1
tl Cbl)T−1 = Wd, (5.33)

T (C−1
tl Ctr)T−1 = Zd. (5.34)

Since the same transformation is used to diagonalize both matrices, wi and zi

correspond to the same sinusoidal component. A necessary condition for this
property to hold is that all the matrices involved in the two matrix pencils,
Jtr − µJtl and Jbl − λJtl, can be written as the product of the same left and
right matrices, with possibly a different matrix in the middle. On the other
hand, a sufficient condition for Y

′
and Z

′
to have the full rank M is

P − L ≥ M K, L ≥ M Q − K ≥ M. (5.35)

Equation (5.35) implies that if we set L = K = M , the sufficient condition
for having a unique solution is P ≥ 2M , Q ≥ 2M . In other words, it suffices
to know G[m, n], m, n ∈ [−M, M ] 2, therefore, only O(M2) samples of g(x, y)
will yield a unique solution for the set of pairs (wi, zi). Note that G[m, n] do
not necessarily have to correspond to the lowpass version of the signal and it
is possible to obtain a perfect reconstruction from any subspace of the same
dimension3.

Finally, the corresponding set of weights {ai} can be found from equation
(5.23), i.e. A = W

′+JZ
′+, where (·)+ denotes a pseudoinverse of (·). Since

both W
′

and Z
′

are of rank M , the above system will have a unique solution
for the matrix of coefficients A. This leads us to the following proposition.

Proposition 5.2: Consider a periodic set of M weighted 2-D Diracs g(x, y),
having periods Tx = Ty = T in the x and y directions, and let ϕ(x, y) be
the 2-D sinc sampling kernel of bandwidth [−Mω0, Mω0] × [−Mω0, Mω0]. If
the sampling periods Tsx and Tsy are such that Nsx = T/Tsx ≥ 2M + 1 and
Nsy = T/Tsy ≥ 2M + 1, where {Nsx, Nsy} ∈ N, then in the general case, the
samples

ys[p, q] = < g(x, y), ϕ(x − pTsx, y − qTsy) >, p ∈ [0, Nsx − 1] q ∈ [0, Nsy − 1],

are a sufficient characterization of g(x, y).

In our analysis, we specifically considered the sinc sampling kernel because
it allows for a straightforward computation of the Fourier series coefficients
of the signal from the set of samples. However, we can use any bandlimited

2In our case G[m, n] are the Fourier series coefficients of g(x, y).
3While this is true for deterministic signals, in the presence of noise it is desirable to use

oversampled schemes and estimate the signal parameters from a frequency band where SNR
is highest.
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kernel whose spectrum Φ is nonzero over the same region [−Mω0, Mω0] ×
[−Mω0, Mω0], assuming that the inverse of Φ over that frequency range ex-
ists and is numerically stable. That is, the only modification is that the Fourier
series coefficients of the sampled signal have to be divided by the corresponding
Fourier series coefficients of the sampling kernel before running the estimation
algorithm. This allows us to use the same approach based on the shift-invariant
subspace property together with a much wider class of anti-aliasing filters.

5.4 Extension to Lines and Polygons

The results we derived so far can be applied to a larger class of two-dimensional
signals, such as simple lines, polygonal lines, as well as some simple 2-D objects.
As we will see, the extensions are not straightforward and typically become more
intricate as we increase the complexity of the model.

5.4.1 Line of finite length

Consider a periodic signal g(x, y), represented within one period as

g(x, y) =
{

δ(y − (ax + b)), x1 ≤ x ≤ x2

0, otherwise (5.36)

The above notation assumes that the line is not vertical, otherwise a similar
expression can be written by swapping x and y. The Fourier series coefficients
of g(x, y) are given by

G[m, n] =
1
T 2

∫ T

0

∫ T

0

g(x, y)e−jmω0xe−jnω0ydxdy

=
1
T 2

∫ x=x2

x=x1

e−jmω0x(
∫ T

0

δ(y − (ax + b))e−jnω0ydy)dx

=
1
T 2

∫ x=x2

x=x1

e−jmω0xe−jnω0(ax+b)dx

=
e−jmω0x1e−jnω0y1 − e−jmω0x2e−jnω0y2

j2πT 2(m + na)
. (5.37)

Clearly, G[m, n] has no longer the form of a linear combination of complex
exponentials, since both m and n appear in the denominator. Therefore, neither
the annihilating filter method nor the subspace methods can be used directly
with the set of the Fourier series coefficients. Yet, the problem can be handled
in the following way. Consider the coefficients G[m, 0]

G[m, 0] =
e−jmω0x1 − e−jmω0x2

j2πT 2m
, (5.38)

and define G̃[m] = j2πT 2mG[m, 0] = e−jmω0x1 − e−jmω0x2 . Since x1 �= x2
4,

we can solve for the set {x1, x2} by using the 1-D annihilating filter H(z) with
zeros z1 = e−jω0x1 and z2 = e−jω0x2 . The filter coefficients H [m] = coeff(H(z))

4We assumed that the line is not vertical, otherwise we have to consider the coefficients
G[0, n]
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can be found from the system of equations H [m] ∗ G̃[m] = 0, m ∈ [−2, 2].
Next, consider the coefficients G[m, 1]

G[m, 1] =
e−jmω0x1e−jω0y1 − e−jmω0x2e−jω0y2

j2πT 2(m + a)
. (5.39)

There are three unknowns y1, y2 and a, that can be found from G[m, 1], m ∈
[−2, 2]. Along with the set {x1, x2}, this uniquely defines the line.

5.4.2 Polygonal line

A straightforward extension of the previous result is the case of a 2-D signal
g(x, y) made up of a periodic pattern of a polygonal line, that is, a closed curve
made up of a finite number of linear pieces. Let the vertices be located at points
(xi, yi), i = 1, 2, ..., M . Since we can think of g(x, y) as being composed of M
lines, the Fourier series coefficients G[m, n] can be found using equation (5.37),

G[m, n] =
e−jmω0x1e−jnω0y1

j2πT 2
[

1
m + na1

− 1
m + naM

]+

+
e−jmω0x2e−jnω0y2

j2πT 2
[

1
m + na2

− 1
m + na1

] + ...

+
e−jmω0xM e−jnω0yM

j2πT 2
[

1
m + naM

− 1
m + naM−1

]

The above relation holds if there are no vertical segments in the signal and is
obtained after grouping the terms with the same denominator. Consider the set
of coefficients G[0, n], n ∈ [−M, M ]:

G[0, n] =
e−jnω0y1

j2πT 2
[

1
na1

− 1
naM

] +
e−jnω0y2

j2πT 2
[

1
na2

− 1
na1

] + · · ·

· · · +
e−jnω0yM

j2πT 2
[

1
naM

− 1
naM−1

]. (5.40)

Let G̃[n] = j2πT 2nG[0, n]:

G̃[n] =
N∑

k=1

cke−jω0nyk n ∈ Z, (5.41)

where ck = 1/ak − 1/ak−1. Since G̃[n] has the form of a weighted sum of
complex exponentials, the sets {yi} and {ci} can be found from the coefficients
G̃[n], n ∈ [−M, M ] using the annihilating filter method. In order to obtain a
unique solution, two conditions need to be satisfied. Namely, all yi must be
different and none of the coefficients ci should be equal to zero. The second
condition is always satisfied, given the fact that the adjacent segments of the
polygonal line must have different slopes (ak−1 and ak). On the other hand, the
first condition poses further constraints on the location of the vertices.
Next, consider a set of coefficients G[1, n] n ∈ [−M, M ], given by

G[1, n] =
e−jω0x1e−jnω0y1

j2πT 2
[

1
1 + na1

− 1
1 + naM

] + · · ·

· · · +
e−jω0xM e−jnω0yM

j2πT 2
[

1
1 + naM

− 1
1 + naN−1

]. (5.42)
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This is a system of 2M nonlinear equations with 2M unknowns that can be
solved for zi = e−jω0xi and ai. Together with the corresponding values yi, this
uniquely defines the polygonal line.

While all the signal parameters can be extracted from the above set of sam-
ples, the described method includes solving the system of nonlinear equations
(5.42), which may yield a mediocre numerical precision and high complexity.
One possible way to overcome this problem is to solve separately for the x and
the y coordinates of vertices, and then use a combinatorial approach, that is,
find a set of pairs (xi, yi) that best matches the lowpass approximation obtained
from the samples. Although this solution requires twice the number of samples
compared to the previous method and involves an optimization procedure as
well, its numerical precision is typically much better. Clearly, both methods
yield a solution by taking O(M) samples, however, the necessary condition for
their success is that the vertices of the polygonal line have no common compo-
nents along the x and y directions.

5.4.3 Bilevel 2-D signals

A further extension of the previous results includes the case of a bilevel signal
g(x, y) made up of a periodic pattern of polygons. As in the previous case,
assume that g(x, y) doesn’t contain vertical lines. Under this assumption, we
can take a partial derivative with respect to y and by denoting gy(x, y) = ∂g(x,y)

∂y ,
we get

∂g(x, y)
∂y

=
∞∑

m=−∞

∞∑
n=−∞

G[m, n]jnω0e
jmω0xxejnω0yy

=
∞∑

m=−∞

∞∑
n=−∞

Gy [m, n]ejmω0xejnω0y. (5.43)

Since gy(x, y) is a signal made up of a polygonal line, its Fourier series coefficients
are given by

Gy[m, n] = jω0nG[m, n]. (5.44)

Therefore, instead of taking a derivative of the signal itself, the derivation can
be done on the Fourier series coefficients and the values Gy[m, n] should be used
in the algorithm developed in Section 5.2.

5.5 Numerical Performance and Algorithms in the
Presence of Noise

So far we have assumed deterministic signals and considered the possibility of
developing the sampling schemes that allow for perfect reconstruction from as
few samples as possible. Questions that naturally arise from this approach are
related to numerical precision and stability of the developed algorithms as well
as to their performance in the presence of noise.
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5.5.1 Complexity

In Section 5.1.1, we proved that in the noiseless, separable case, the annihilating
filter algorithm leads to perfect reconstruction from only O(M) samples. How-
ever, in the presence of noise, this approach has several disadvantages. Namely,
the annihilating filter method is basically a 1-D approach, that is, the coordi-
nates of Diracs along one direction are estimated by finding the roots of the
annihilating filter, while the corresponding coordinates along the other direc-
tion are then found by solving a Vandermonde system (i.e., the information is
extracted from a set of weighting coefficients). In general, the root finding part
of the algorithm is more robust to noise than the estimation of the weighting
coefficients, which then results in a different numerical precision in the x and y
directions. Besides, even in the case of noiseless data, the numerical accuracy of
the method decreases if there are closely spaced Diracs in the set (particularly for
large values of M), due to the root finding part of the algorithm. The approach
based on 2-D subspace methods exploits the shift-invariance property and relies
only on a right deployment of matrix manipulations. It avoids the problem of
different precision in x and y and typically yields better performances, yet, at
the expense of a higher computational complexity. The major computational
requirement of the annihilating filter method is associated to the root finding
part of the algorithm, so that the overall computational order is O(M2 log M).
The computational requirement of the ACMP algorithm is dominated by the
singular value decomposition of the M2 × M2 matrix Jtl, which results in the
overall order of O(M6).

5.5.2 Noisy case

In the case of noisy signals, critically sampled schemes typically result in poor
numerical accuracy. In practice, this problem can be dealt with by using over-
sampling and truncation of the singular value decomposition (SVD) of certain
matrices. For example, we can exploit this idea to modify the ACMP algorithm
presented in Section 5.2. Since the presence of noise destroys the low rank prop-
erty of the matrix Jtl, defined in (5.28), we have to truncate the singular value
decomposition of Jtl explicitly to rank M , i.e.

Jtl = UsSsV
H
s + UnSnV H

n , (5.45)

with Ss being a full-rank M ×M matrix. The presence of noise thus necessarily
degrades the performance of the algorithm, due to the fact that the eigentrans-
formation T will no longer perfectly diagonalize both matrix pencils.

The same approach can be used to modify the annihilating filter method,
that is, we should consider an extended system of equations (5.13)

M∑
i=1

hiG[m − i, 1] = −G[m, 1], m = 1, 2, ..., M1 M1 > M, (5.46)

and decompose a matrix of coefficients G as

G =

⎛⎜⎜⎝
G[0, 1] G[−1, 1] · · · G[1 − M, 1]
G[1, 1] G[0, 1] . . . G[2 − M, 1]

...
...

. . .
G[M1 − 1, 1] G[M1 − 2, 1] · · · G[M1 − M, 1]

⎞⎟⎟⎠
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= UsSsV
H
s + UnSnV H

n , (5.47)

where the first term corresponds to the best (in the Frobenius-norm sense) rank
M approximation of the matrix G. The filter coefficients H are then computed
as

H = −VsS
−1
s UH

s ·

⎛⎜⎜⎝
G[1, 1]
G[2, 1]

...
G[M1, 1]

⎞⎟⎟⎠ . (5.48)

5.5.3 Estimation of the model order and model mismatch

In all the methods presented so far, we required prior knowledge of the model
order M . Therefore, an obvious question is how can one know in advance the
number of unknown parameters of the signal? This question is at the core of a
model-based approach to nonlinear estimation problems encountered in signal
and data analysis [26] [39]. For example, if we use the ACMP algorithm, M can
be estimated as the number of dominant singular values of Jtl, which is a very
good estimate of the model order if the smallest singular value of the original,
low-rank matrix Jtl, is not dominated by the noise variance. On the other hand,
for low values of signal-to-noise ratio, it is often difficult to discriminate between
small singular values corresponding to the signal from extraneous ones due to
noise and, typically, only dominant signal components can be reliably estimated.
That is, in such a case, overmodeling the signal can give rise to spurious poles
which can be incorrectly identified as signal poles. Similarly, if the annihilating
filter algorithm is used, the number of dominant singular vectors of the extended
matrix G (assuming that the number of columns is greater than M) should be
used as an estimate of the model order. A more detailed treatment of this
problem can be found in [26].

Another interesting question is how well we can reconstruct the signal if the
number of samples is less than the minimum number theoretically required for
perfect reconstruction? Intuitively, if the signal has only K < M dominant
components, one might expect to extract only these components from the un-
dersampled signal, provided that the number of samples is still sufficient for
that. This turns out to be true, as we will demonstrate in the next section,
which points to some robustness of the algorithms to model mismatch.

5.6 Simulation Results

We illustrate the performance of the proposed sampling schemes with some
simulation examples. A noiseless periodic signal made up of M = 9 weighted
Diracs, that have common components along the y direction but not along the
x direction, is presented in Figure 5.2(a). The signal is filtered with the sinc
sampling kernel of bandwidth [−Mω0, Mω0]×[−ω0, ω0], shown in Figure 5.2(b),
leading to the lowpass approximation in Figure 5.2(c). All the signal parame-
ters are estimated using the annihilating filter method, and the reconstructed
signal is illustrated in Figure 5.2(d). The algorithm provides almost perfect
reconstruction in this case, with an RMSE of less than 10−12.

Figure 5.3(a) illustrates a noiseless signal consisting of M = 9 weighted
Diracs that have common components in both directions. Since the annihilating
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Figure 5.2: The Annihilating Filter Method. (a) Two-dimensional signal made
up of M = 9 weighted Diracs (b) 2-D sinc sampling kernel of bandwidth [−Mω0, Mω0] ×
[−ω0, ω0] (c) Lowpass approximation obtained by convolving the signal with the sinc function
(d) Reconstructed signal.

filter method would fail in this case, we will use the ACMP algorithm to recover
the signal from its lowpass approximation. The signal is sampled with the sinc
sampling kernel, shown in Figure 5.3(b), and reconstructed with an RMSE of
less than 10−13. However, as opposed to the annihilating filter method, the
numerical precision of this algorithm is not considerably affected by the spacing
of Diracs in the set. This is shown in Figure 5.4, where a reconstruction error is
plotted as a function of average spacing D of the Diracs in the set. Clearly, for
small values of D, the performance of the annihilating filter method degrades as
the number of Diracs increases, while the ACMP method retains good numerical
properties even for large values of M .

We next analyze robustness of the algorithms to model mismatch, in partic-
ular, how well they perform if the signal is undersampled. Figure 5.5(a) shows
a signal made up of M = 8 weighted Diracs, with K = 5 of them being domi-
nant. The locations of the Diracs are randomly chosen according to a uniform
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Figure 5.3: The ACMP algorithm. (a) Signal made up of M = 9 weighted Diracs
that have common components along both directions (b) Sinc sampling kernel of bandwidth
[−Mω0, Mω0] × [−Mω0, Mω0] used in the algorithm (c) Lowpass approximation of the signal.

distribution over [1, 150] × [1, 150]. The signal is sampled with the sinc kernel
of bandwidth [−Kω0, Kω0] × [−Kω0, Kω0] and the ACMP method is used to
find the signal parameters from its lowpass approximation. In Figure 5.5(b) we
show a reconstructed signal where only the dominant components have been
extracted, while the precision with which we can estimate them depends on the
number of non-dominant components and their overall power, as illustrated in
Figure 5.5(c).

Figure 5.6 shows the behavior of the ACMP algorithm in the presence of
noise. We considered the signal made up of 8 Diracs, this time having equal
weights, embedded in additive white Gaussian noise. The method was tested
for different values of a signal-to-noise ratio (SNR) and different values of the
sampling kernel bandwidth Bs. For each value of the SNR, as well as Bs,
we plotted an average RMSE over 50 different realizations of the signal. The
results clearly indicate that the numerical precision of the method is improved
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Figure 5.4: Numerical Performance vs. Average Spacing of the Diracs.
The numerical behavior of the algorithms is tested for different values of the average spacing
(normalized to one period) of M Diracs in the set, as well as for different values of M . (a)
Average reconstruction error for the annihilating filter algorithm (b) Average reconstruction error
for the ACMP algorithm.

by increasing the bandwidth of the sampling kernel and estimating the signal
parameters from a larger set of samples. Roughly speaking, in order to reduce
the RMSE by a factor of Ks, the bandwidth of the sampling kernel has to be
increased Ks times.

Some extensions of the developed sampling schemes to simple objects are
considered next. One example is presented in Figure 5.7, which demonstrates
the performance of the algorithm when applied to a set of two finite lines.
The signal is filtered with the sinc kernel of bandwidth [−4ω0, 4ω0]× [−ω0, ω0],
leading to a lowpass approximation shown in Figure 5.7(b). A set of lines
is almost perfectly reconstructed by using the annihilating filter method (see
Figure 5.7(c)). Another example is illustrated in Figure 5.8(a), that is, sampling
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Figure 5.5: Model mismatch (a) Set of M = 8 weighted Diracs with K = 5 Diracs
being dominant, all having the same weights an = 10, while the rest have weights an = 3. (b)
Reconstructed signal. We assumed that the model order is M = 5 and used the ACMP algorithm to
reconstruct the signal. Only the dominant components are extracted, with the reconstruction error
of RMSE=0.006. (c) Average reconstruction error for different values of the ratio of amplitudes
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a bilevel pentagon. The signal is first filtered with a sinc kernel of bandwidth
[−2Mω0, 2Mω0] × [−ω0, ω0] (where M = 5), and a set of samples is taken
from a lowpass approximation shown in Figure 5.8(b). Although the signal is
completely specified by this set of samples, we extracted only the x coordinates
of vertices from the given set, while the y coordinates are found from sample
values taken with the sinc kernel of bandwidth [−ω0, ω0]×[−2Mω0, 2Mω0]. The
reason for doing this is to avoid solving the system of nonlinear equations (5.42),
which typically results in less numerical precision than the above approach. The
corresponding pairs (xi, yi) are then found by using a combinatorial method,
that is, by choosing a set that corresponds to a signal with a lowpass version
that best matches the lowpass approximation from Figure 5.8(b). Figure 5.8(c)
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Figure 5.6: Performance in the presence of noise. RMSE versus SNR for
different values of the oversampling factor. We consider the signal made up of 8
Diracs with equal weights. The method was tested for different values of SNR and
different values of the bandwidth of the sampling kernel Bs.

shows the polygonal line reconstructed using the annihilating filter method,
whereas in Figure 5.8(d) a 1-D subspace method (the state space approach
from Chapter 2) is applied, which clearly performs better.

5.7 Conclusion

We have presented several algorithms for sampling certain classes of 2-D signals
that are not bandlimited, but have a finite number of degrees of freedom. Our
approach differs form standard multidimensional sampling schemes, since we
tried to develop methods that can perfectly reconstruct such signals from a finite
set of samples. We analyzed in detail the signal made up of 2-D Diracs, whose
algebraic structure gives a good insight into the basic principles inherent in all
our algorithms, and discussed possible extensions of the results to more complex
classes of signals. In order to derive exact sampling formulas, we used some
techniques already encountered in the context of spectral estimation. Although
the sampling results were derived under the noise-free assumption, the case
of noisy data was considered as well. The methods have desirable numerical
properties, for a good choice of parameters and sufficient oversampling. We
are currently looking into one application to super-resolution videogrammetry,
where the position of 3-D objects can be determined with sub-pixel precision by
locating some clearly marked features, such as points or edges, using a set of 2-D
images taken from various angles [14]. In the next chapter, we will investigate
alternative sampling techniques, such as Radon transform sampling, which are
applicable to more general classes of signals.
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Figure 5.7: Set of Finite Lines. (a) Signal made up of two finite lines (b) Lowpass
approximation obtained by convolving the signal with the sinc kernel of bandwidth [−4ω0, 4ω0] ×
[−ω0, ω0] (c) Reconstructed set of lines.
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Figure 5.8: Bilevel Polygon. (a) Bilevel pentagon. The signal has 2M = 10 degrees
of freedom (b) Lowpass approximation obtained by convolving the signal with the sinc kernel of
bandwidth [−2Mω0, 2Mω0] × [−ω0, ω0] (c) Polygonal line reconstructed with the annihilating
filter method and the original polygonal line. (d) Polygonal line reconstructed with the state space
method. In this case the line is reconstructed with an RMSE of less than 10−4.



Chapter 6

Extension to Aperiodic and
Radon Transform Case

In the previous chapter, we have considered the problem of sampling periodic
non-bandlimited signals of finite complexity, that is, 2-D signals that have a
parametric representation with a finite number of degrees of freedom. We have
first analyzed a periodic set of M weighted Diracs and proved that in the absence
of noise, such a signal can be perfectly reconstructed from O(M) samples in the
separable case, or O(M2) samples if the problem is non-separable. However, we
have seen that extending the results to more complex classes of signals is far
from trivial. For example, even for the very simple case of a bilevel polygon, the
problem of reconstructing such a signal from a set of its Fourier series coefficients
becomes quite involved. Furthermore, the Fourier analysis can be formally used
only in the case of periodic signals. Therefore, an important and challenging
question is whether it is possible to come up with practical methods for sampling
aperiodic 2-D signals with a finite complexity, which yield perfect reconstruction
from a finite set of samples.

In this chapter, we consider the problem of developing sampling schemes
and reconstruction formulas for certain classes of such signals, such as sets of
2-D Diracs, polygons and bilevel signals with piecewise polynomial boundaries.
We first develop a sampling scheme based on a Gaussian kernel, and point to
potentials and limitations of such an approach. We then investigate an alter-
native approach, based on sampling the Radon transform of such signals. In
particular, we show that by taking a finite number of “filtered” line integrals,
the problem can be reduced to its one-dimensional equivalent, which is more
convenient for algorithmic implementation.

The outline of the chapter is as follows. In Section 6.1, we consider the
case of a finite set of Diracs, and derive sampling theorems using a Gaussian
kernel. In Section 6.2, we focus on the problem of reconstructing the signal from
a finite number of samples of its Radon transform. That is, we analyze a set
of M 2-D Diracs and prove that the signal can be uniquely reconstructed by
taking at least 2M samples along M + 1 distinct directions. In Section 6.3, we
extend the result to more complex classes of signals, such as bilevel polygons,
or bilevel signals with piecewise polynomial boundaries. Finally, in Section 6.4,
we conclude with a summary of the key results.

103
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6.1 Gaussian Sampling Scheme

The sampling results for a set of 2-D Diracs, presented in the previous chapter,
have been derived under the assumption that the signal is modeled as a periodic
pattern of Diracs, so that the relevant parameters can be extracted from the
appropriate set of the Fourier series coefficients. In this section, we analyze
the problem of sampling two-dimensional signals made up of a finite number of
weighted Diracs.

Let a signal g(x, y) be given by

g(x, y) =
M−1∑
i=0

aiδ(x − xi, y − yi). (6.1)

Consider the samples obtained by filtering the signal with the Gaussian kernel,
ϕg(x, y) = e−(x2+y2)/2σ2

, taken at (mT, nT )

g[m, n] =
M−1∑
i=0

aie
−((xi−mT )2+(yi−nT )2)/2σ2

=
M−1∑
i=0

aie
−(x2

i+y2
i )/2σ2

e(mxi+nyi)/σ2
e−(m2+n2)T 2/2σ2

(6.2)

Extending a technique from Section 3.3, denote by g̃[m, n] = g[m, n]e(m2+n2)T 2/2σ2

and ci = aie
−(x2

i +y2
i )/2σ2

. Then, (6.2) reduces to:

g̃[m, n] =
M−1∑
i=0

cie
mxi/σ2

enyi/σ2
. (6.3)

The set of modified samples g̃[m, n] can be thus expressed as a linear combina-
tion of real exponentials. Therefore, in order to determine ai and (xi, yi) in the
general, non-separable case, one can use the ACMP method described in the
previous chapter. Thus, we have the following proposition:

Proposition 6.1: Consider a finite set of M weighted 2-D Diracs g(x, y),
and let ϕg(x, y) be the Gaussian sampling kernel ϕg(x, y) = e−(x2+y2)/2σ2

. If
Nsx ≥ 2M + 1 and Nsy ≥ 2M + 1, then the NsxNsy sample values

ys[p, q] =< g(x, y), ϕg(x − pT, y − qT ) >, p ∈ [0, Nsx − 1] q ∈ [0, Nsy − 1]

are sufficient to reconstruct the signal.

In Figure 6.1(a), we illustrate a noiseless signal made up of M = 17 weighted
Diracs. The signal is filtered with the Gaussian kernel shown in Figure 6.1(b),
and a set of uniform samples is taken from a filtered version shown in Figure
6.1(c). The reconstructed signal is presented in Figure 6.1(d), and the recon-
struction error is less than 10−8. As already discussed in Chapter 2, the width of
the Gaussian kernel (i.e. the value of the parameter σ) must be chosen carefully
in order to ensure the good numerical performance of the method, as illustrated
is Figure 6.2.
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Figure 6.1: Finite Set of 2-D Diracs. (a) Two-dimensional signal made up of M = 17
weighted Diracs (b) Gaussian sampling kernel (c) Convolution of the signal with the sampling
kernel (d) Reconstructed signal with an RMSE of less than 10−8.

6.1.1 Point spread function

The previous result can be directly extended to the case of signals modeled as
a “blurred” version of the set of Diracs, or more precisely, as a convolution of
the signal g(x, y) with a point spread function (PSF). This case is of interest
to the field of optical astronomy, where the image formation, without noise,
can be modeled as a convolution of the object being made up of point sources
(i.e. stars) with the PSF, which may be a result of the imperfections of imaging
optics, atmospheric processes etc.

There is no exact expression describing the shape of the PSF, however, many
authors [56] [68] prefer to model the blurring process due to the atmospheric
turbulence by a Gaussian function of the form:

h(x, y) ∝ e
− (x2+y2)

2σ2
s , (6.4)
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or, equivalently, in the frequency domain as

H(fx, fy) ∝ e−π2(f2
x+f2

y )2σ2
s , (6.5)

which turns out to be a good approximation in the case of aberration-free imag-
ing optics.

Following the approach from the previous section, the blurred version of the
set of Diracs g(x, y) ∗ h(x, y) is convolved with the Gaussian kernel ϕg(x, y) =
e−(x2+y2)/2σ2

prior to sampling. Due to the associativity of the convolution op-
erator, this is equivalent to convolving the set of Diracs g(x, y) with a Gaussian
kernel of different width1, that is,

ϕ(s)
g (x, y) = e

− (x2+y2)
2(σ2+σ2

s) .

As a result, a set of samples can be expressed as a linear combination of 2-D
exponentials, which was studied in the previous section. Note that since σs is
supposed to be known (or can be estimated prior to sampling the signal), the
only difference compared to the previous case is that the “effective” width of the
sampling kernel is given by (σ2 +σ2

s)1/2. This is illustrated in Figure 6.3, where
we show the case of a noiseless signal made up of K = 17 Diracs, convolved with
a Gaussian PSF (Figure 6.3(a)), and critically sampled. The signal is filtered
with a Gaussian kernel, shown in Figure 6.1(b). The reconstructed set of Diracs
is shown in Figure 6.3(b), where the RMSE of reconstruction is less than 10−7.

6.1.2 Noisy case

Similarly to the 1-D case, the sampling scheme based on a Gaussian kernel can
be ill-conditioned in the presence of noise, due to the weighting of signal samples

1The analytic expression for the new kernel can be obtained in the frequency domain, by
multiplying Fourier transforms of ϕg(x, y) and h(x, y).
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Figure 6.3: Point spread function. (a) Two-dimensional signal made up of M = 17
weighted Diracs, convolved with a Gaussian PSF. (d) Reconstructed signal with an RMSE of less
than 10−7.

with exponentially increasing terms. In order to improve the conditioning of the
system, one can use the technique discussed in Chapter 3, where a data matrix
is properly weighted prior to estimating the signal parameters, as described in
Section 3.3.1. The performance of such a method in the two-dimensional case is
illustrated in Figure 6.4, where we show the RMSE of location estimates versus
SNR, and this for a local reconstruction method (i.e., the size of a sampling
window is comparable to the width of the sampling kernel). In particular, we
consider the signal made up of K = 5 Diracs with equal weights, randomly
distributed over [1, 50] × [1, 50], yet assuming that their average spacing (in
both the x and the y direction) is Ts = 8. The signal is sampled with a 2-D
Gaussian kernel with parameter σ = 5, and the method was tested for different
values of the oversampling factor. As expected, by increasing the sampling
density, RMSE decreases, however, by comparing the RMSE obtained in this
case with an RMSE obtained in the case of periodic signals (shown in Figure
5.6), we can see that the Gaussian scheme is less robust to noise. Furthermore,
as already discussed in the 1-D case, the width of the kernel must be chosen
carefully, otherwise, the performance of the method can degrade significantly.

Still, one of the main problems associated with the Gaussian scheme is that
it cannot be directly extended to more complex classes of 2-D signals. Namely,
unlike in the case of periodic signals, where it was possible to generalize the result
on 2-D Diracs to signals such as sets of lines and polygons, in the case of finite-
length signals, similar approach cannot be used. In particular, even though
in the finite-length case the samples can be expressed as a sum of weighted
exponentials as well, the weights ci depend on the x and y coordinates of the
Diracs. That is, ci = aie

−(x2
i +y2

i )/2σ2
(see (6.3)), and it is no longer possible to

extend the result to other classes of signals using the approach from Section 5.4.
In the rest of the chapter, we will consider an alternative approach to sam-

pling aperiodic 2-D signals of finite complexity, which exploits the properties
of the signal in the Radon transform domain [9] [18]. The concept we present
offers the possibility of decomposing the problem into a set of 1-D equivalents,
which is more convenient for algorithmic implementation and can be extended
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Figure 6.4: Performance of the 2-D Gaussian sampling scheme. RMSE of location
estimates versus SNR for different values of the oversampling factor. We consider the signal made
up of 8 Diracs with equal weights, randomly distributed over [1, 100] × [1, 100], sampled with the
2-D Gaussian kernel, with parameter σ = 7. The method was tested for different values of SNR
and different values of the oversampling factor.

to a wider class of signals.

6.2 Sampling the Radon transform

We start the analysis by considering the same signal g(x, y), made up of M
weighted Diracs. As already mentioned, the signal g(x, y) is given by

g(x, y) =
M−1∑
k=0

ckδ(x − xk, y − yk).

Let Rg(p, θ) denote the Radon transform [18] of g(x, y)

Rg(p, θ) =
∫

g(x, y)δ(p − x cos(θ) − y sin(θ))dxdy, (6.6)

that is, the integral of g over the line lp,θ, defined by p(θ) = x cos(θ) + y sin(θ).
The key is to observe that for any given angle θ0, the Radon transform Rg(p, θ0)
can be represented as a weighted sum of M0 ≤ M 1-D Diracs, that is,

Rg(p, θ0) =
M0−1∑
k=0

a0kδ(p − p0k). (6.7)

The reason for having M0 ≤ M is that there can be more than one Dirac spike
on the path of integration. For the case of a signal made up of 2-D Diracs, this
is illustrated in Figure 6.5.

This fact can be exploited in an elegant way to tackle the problem in the
2-D case. Since the signal consisting of M 1-D Diracs can be perfectly recovered
from a set of 2M samples, by sampling the signal with the Gaussian kernel, one
can take advantage of that result to develop a sampling scheme for 2-D signals
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Figure 6.5: Radon transform of the set of Diracs The projection of a set of
M weighted 2-D Diracs onto an arbitrary line is a stream of at most M weighted
1-D Diracs.

as well. Namely, instead of taking the line integral in the equation (6.6), we
can replace the δ function with the appropriate kernel, such as the Gaussian
kernel ϕg(x) = e−x2/2σ2

. In other words, we can consider the filtered projection
R̃g(p, θ) of the signal g(x, y)

R̃g(p, θ) =
∫

g(x, y)ϕ(p − pθ)dxdy,

where pθ = x cos(θ) + y sin(θ). An interesting property that emerges form this
formulation is that for any angle θ0, the projection R̃g(p, θ0) of g(x, y) becomes
a convolution of its Radon transform Rg(p, θ0) (that is, a stream of 1-D Diracs)
and the Gaussian sampling kernel, i.e.

R̃g(p, θ0) = Rg(p, θ0) ∗ ϕg(p). (6.8)

The above equation implies that the locations pk and weights ak of the 1-D
Diracs, defined by (6.7), can be obtained from N ≥ 2M0 samples of R̃g(p, θ0),
that is, pn(θ0) = R̃g(p− nTp, θ0), n = 0, ..., N − 1. Alternatively, one can use a
bandlimited kernel, such as the sinc kernel, however, in this case, the problem of
reconstructing the signal is more complex [85]. While the set of locations {p0k}
does not itself define g(x, y), in the following, we will prove that the projections
of g(x, y) onto M + 1 lines entirely specify the signal.

Assume that we find the projections of g(x, y) onto M +1 lines with different
slopes, determined by angles θ0, θ1,... θM . Using the method described above,
we can solve for the coordinates pmk and weights amk, m = 0, 1, ...M of the set of
1-D Diracs along each line, and thus uniquely specify the set of “projecting” lines
lpmk,θm . Clearly, for any point that belongs to the set of 2-D Diracs, exactly
M + 1 projecting lines must intersect. A reverse statement, that the points
where M + 1 projecting lines intersect must belong to the set, can be proved
by counterexample. Namely, assume that exactly M + 1 such lines intersect at
some point A. If A does not belong to the set of Diracs, then there must exist at
least one point from the set located at each of the lines lpmk,θm , m = 0, 1, ...M ,
which implies that g(x, y) is made up of at least M + 1 Diracs, which obviously
contradicts our basic assumption.
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Figure 6.6: Reconstruction of the Set of 2-D Diracs. (a) 2-D signal con-
sisting of M = 3 weighted Diracs (b) Reconstruction of the signal from projecting
lines obtained by sampling the Radon transform of the signal with a Gaussian kernel.
Points where exactly M + 1 = 4 lines intersect correspond to the Diracs in the set.

Once the locations of Diracs have been found, the corresponding weights ck

can be estimated by solving the system of at least M linear equations, that we
can choose out of (M + 1)2M equations available from the set of projections of
g(x, y). Thus, we can state:

Theorem 6.2 Consider a finite set of M weighted 2-D Diracs and let ϕg(p) be
the 1-D Gaussian sampling kernel, given by ϕg(x) = e−x2/2σ2

. If N ≥ 2M then
the N sample values of the filtered Radon transform

< Rg(p, θm), Bpϕg(p − nTp)) > n = 1, ..., N

taken along each of the M +1 different directions θ0, θ1,... θM , uniquely specify
the signal.

In Figure 6.6, we illustrate the basic principle behind the proposed method
with a simulation example. In Figure 6.6(a), we show a set of M = 3 Diracs in
the 2-D plane. The filtered projections of the signal are taken along four different
directions, and in each direction, we take a set of 2M = 6 measurements. The
reconstructed signal is shown in Figure 6.6(b), where the locations of Diracs are
found from a set of points where exactly M + 1 = 4 projecting lines intersect.

As can be seen from the above analysis, in the general case, the algorithm
yields a unique solution by taking on the order of M2 samples of the Radon
transform. However, in practice, taking samples in more than three directions
is often not necessary, thus, one can often take on the order of M samples, and
still be able to reconstruct the signal. In [9] and [29], the authors even argue
that in “most cases” encountered in practice, two projections are sufficient for
a unique reconstruction, however, in such a case, the reconstruction algorithm
is based on a combinatorial approach. Finally, we would like to note that as
opposed to other reconstruction methods that require as many measurements
in the radial direction as possible [2], our approach assumes that the number of
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samples in each direction is related to the number of degrees of freedom of the
signal.

6.3 Extension to More Complex Classes of Signals

After the somewhat “synthetic” case study in the previous section, we will next
explore possible extensions of this result to more complex classes of signals. In
the first example, we will consider the problem of sampling a bilevel polygon, for
which traditional sampling schemes turn out to be quite inefficient, although it
represents a simple example of a non-bandlimited 2-D signal of finite complex-
ity. The second example is related to bilevel signals with piecewise polynomial
boundaries. Unlike in the periodic case, where the problem of reconstructing
such signals from an appropriate set of the Fourier series coefficients is quite
complex, by sampling the Radon transform of such signals we can solve the
problem using simpler techniques.

6.3.1 Bilevel polygon

Consider a signal g(x, y) which is a bilevel polygon, and let vertices be at points
(xi, yi), i = 1, 2, ...M . Obviously, this signal has 2M degrees of freedom, since it
is uniquely specified by the coordinates of its vertices. In the previous chapter,
we have seen that developing an exact sampling result in the case of a periodic
signal, which takes advantage of the frequency domain representation of the
signal, is quite complicated. Besides, it imposes some constraints in terms of
the location of vertices, namely, we required that the boundary contains no ver-
tical or horizontal lines. An alternative way to solve for the coordinates (xi, yi)
is to take advantage of the fact that the projection of g(x, y) on an arbitrary
line is a piecewise linear signal. We can therefore use the same approach as in
the previous section, and incorporate the sampling schemes for such 1-D signals
into our algorithm, by replacing the δ function from (6.7) by a proper kernel.
Namely, a 1-D piecewise linear signal f(p) with M pieces, can be uniquely rep-
resented by its 2M samples < f(p), ϕ(2)(p−nTp) >, where ϕ

(2)
g (p) is the second

derivative Gaussian sampling kernel. Due to the associativity of the convolu-
tion operator, a convolution of the signal f(p) with ϕ

(2)
g (p) is equivalent to the

convolution of the second derivative f (2)(p) (i.e. a stream of Diracs) with the
Gaussian kernel, thus the problem can be reduced to the one we have already
analyzed in the previous section. In other words, the sampling scheme in 2-D
should be modified such that the δ function in (6.7) is replaced by ϕ

(2)
g (p). In

that case, taking at most 2M samples from each of the M + 1 projections, and
applying the same techniques described in Section 6.2, will uniquely specify the
coordinates of vertices. Therefore, we have the following proposition.

Proposition 6.3 Given a bilevel polygon with M vertices and the second deriva-
tive Gaussian sampling kernel ϕ

(2)
g (p), then the N ≥ 2M samples

< Rg(p, θm), ϕ(2)
g (p − nTp) > n = 1, ..., N

taken along each of the M + 1 directions θ0, θ1,... θM , are a sufficient represen-
tation of the signal.
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Figure 6.7: Bilevel polygon The projection of a bilevel polygon is a piecewise linear signal.
For the signal with M vertices, 2M sample values of the Radon transform taken from each of its
M + 1 different projections uniquely define the signal.

Equivalently, one can use the approach from Section 3.3.3, and sample the
signal with the Gaussian kernel ϕg(p). In this case, the n-th derivative Gaussian
kernel can be approximated as a linear combination of shifted versions of ϕg(p),
using the relation (3.35), that is,

ϕ(n)
g (p) ≈ 2

σ
(ϕ(n−1)

g (p − σ/4) − ϕ(n−1)
g (p + σ/4)), n = 2, 3, 4, ... (6.9)

In particular, the second derivative Gaussian kernel ϕ
(2)
g (p), can be computed

as a weighted sum of three shifted versions of ϕg(p), namely,

ϕ(2)
g (p) ≈

(
2
σ

)2

(ϕg(p − σ/2) − 2ϕg(p) + ϕg(p + σ/2)). (6.10)

We illustrate the method with an example of a bilevel triangle, shown in
Figure 6.8(a). The projections of the signal are taken in M + 1 = 4 different
directions. The reconstructed boundary and the boundary of the original signal
are shown in Figure 6.8(b), indicating desirable properties of our method.

6.3.2 Bilevel signal with piecewise polynomial boundary

Another class of signals well-suited for the application of the presented method,
is a class of bilevel signals with piecewise polynomial boundaries. That is, for
a signal whose boundary is a piecewise polynomial with K pieces of maximum
degree R, it is possible to obtain a perfect reconstruction by taking only O(RK)
samples of its Radon transform. To prove this result, define a bilevel signal with
a piecewise polynomial boundary (with respect to the x axis) as

g(x, y) =
{

1 y ≤ p(x)
0 otherwise.

(6.11)
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Figure 6.8: Reconstruction of a bilevel triangle. (a) Bilevel triangle (b)
Reconstructed (and original) boundary. The reconstructed boundary is obtained by
taking a set of filtered projections with a Gaussian kernel along M +1 = 4 different
directions.

where p(x) is a piecewise polynomial signal having K pieces of maximum degree
R. Therefore, one can extend the result from the 1-D case, and take the samples
of the projection of g(x, y) on the x-axis using the (R+1)-th derivative Gaussian
kernel ϕ

(R+1)
g (x). Note that the (R + 1)-th derivative p(R+1)(x) is a sum of K

differentiated Diracs, i.e.

p(R+1)(t) =
K−1∑
k=0

R∑
r=0

ck,rδ
(r)(t − tk),

that is, there are K degrees of freedom corresponding to the locations of discon-
tinuities and (R + 1)K degrees of freedom corresponding to weights. Therefore,
it suffices to take at least (R + 2)K samples with the kernel ϕ

(R+1)
g (x) to be

able to reconstruct the signal. We can thus state the following proposition:

Proposition 6.4 Consider a bilevel signal with a piecewise polynomial bound-
ary p(x) having K pieces of maximum degree R. Then, the set of N ≥ (R+2)K
samples of its Radon transform,

< Rg(p, θx), ϕ(R+1)(p − nTp) > n = 1, ..., N

taken along the x direction, uniquely represents the signal.
Equivalently, one can use the approach from Section 3.3.3, and take samples

with the Gaussian kernel ϕg(x). In this case, one should increase the sampling
density (R + 2) times, given that the (R + 1)-th derivative Gaussian kernel
ϕ

(R+1)
g (x) can be computed as a linear combination of (R + 2) shifted versions

of ϕg(x), that is, (R+2)2K samples of the Radon transform will uniquely specify
the signal.
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6.4 Conclusion

We have developed algorithms for sampling certain classes of aperiodic 2-D
signals that are not bandlimited, and yet have a finite number of degrees of
freedom. We have first considered the case of a finite set of Diracs, and derived
a sampling theorem using a Gaussian kernel. We next focused on an alternative
approach, and proposed sampling schemes lead to perfect reconstruction from
a finite number of samples of the Radon transform. The proposed algorithms
are very convenient in terms of computational efficiency, and are potentially
of impact in certain signal processing applications, such as reconstruction from
projections. Finally, we believe that a larger class of sampling problems can
be analyzed within the proposed framework, opening up an area for further
investigation.
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Conclusion

7.1 Summary

Sampling theory has recently experienced a strong research revival, due in part
to the connections made with wavelet theory, which led to a generalization of
Shannon’s original theory and development of more advanced formulations with
immediate relevance to signal processing and communications. For example, it
is well-known that the standard sampling paradigm for the representation of
bandlimited functions can be extended to certain classes of non-bandlimited
signals that belong to shift-invariant spaces, such as uniform splines. While
this result is valid for signals that live on a subspace spanned by a generating
function and its uniform shifts, it cannot be extended to the general case, and
typically, only the projection of the signal onto that specific subspace can be
reconstructed.

In recent work by Vetterli et al. [85], it was shown that one can develop
exact sampling schemes for a larger class of signals that are neither bandlimited
nor live on a subspace, namely, certain signals of finite rate of innovation. A
common feature of such signals is that they allow for a parametric representation
with a finite number of degrees of freedom and can be perfectly reconstructed
from a finite number of samples. The key in all constructions is to identify the
innovative part of a signal using model-based methods for parameter estimation,
commonly encountered in high-resolution spectral analysis.

In this thesis, we have revisited the sampling problem for signals of finite
rate of innovation, and developed improved, more robust sampling schemes that
allow for stable and precise reconstruction in the presence of noise. We have also
explored applications of the new sampling results to communication problems
and extended the results to the two-dimensional case. The main contributions
of the thesis are summarized below.

Sampling theory and model-based signal analysis

We have considered the sampling problem for signals made up of 1-D Diracs
and generalized the results to more complex classes of signals. In particular,
we developed a subspace approach to signal reconstruction, which converts a
nonlinear estimation problem into the simpler problem of estimating the pa-
rameters of a linear model. This provides an elegant and robust framework
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for solving a large class of sampling problems, while offering more flexibility
than the traditional scheme for bandlimited signals. For classes of periodic sig-
nals, such as piecewise polynomials and nonuniform splines, we proposed novel
algebraic approaches that solve the sampling problem in the Laplace domain,
after appropriate windowing. Building on the results for periodic signals, we
extended our analysis to finite-length signals and developed sampling schemes
based on a Gaussian kernel.

Most of the schemes we proposed use algebraic transformations to convert
a set of samples into a sum of complex exponentials. As a result, the problem
of signal reconstruction can be reduced to the one of estimating the parameters
of multiple superimposed sinusoids. For such a problem, model-based methods
provide an elegant tool for exposing the structure of an underlying signal. Such
methods assume that the signal satisfies a generating model of known functional
form, and then proceed in estimating the parameters of the assumed model.

We have developed high-resolution model-based algorithms that extend clas-
sical harmonic retrieval techniques and are applicable to more general classes
of parameter estimation problems. One example, relevant to ultra-wideband
(UWB) systems, is the problem of estimating time delays and pulse shapes of
multipath components, which cannot be solved using models and methods used
in conventional communication systems. We have shown that by considering
the problem in the frequency domain and exploiting the structure of the signal
subspace, one can jointly estimate the unknown pulse shapes and time delays,
using linear techniques and fast algorithms.

Another problem we investigated in the context of model-based spectral
estimation is the possibility of improving the resolution performance in the case
when the signal contains closely spaced frequencies. This problem arises in
applications such as time delay estimation in multipath channels, where the
estimation performance of parametric methods can degrade significantly if a
received signal has closely spaced components. We proposed techniques that
can improve the resolution capability of existing methods, without increasing
the computational complexity. Namely, since the performance of parametric
methods depends strongly on the eigenstructure of an associated data matrix,
we proposed alternative ways for constructing such a matrix from the same data
set. While such techniques are of general interest to high-resolution spectral
estimation, they are particularly useful in communication applications.

Applications to wideband communications

We have considered applications of our results to certain nonlinear estimation
problems encountered in wideband communication systems, most notably ultra-
wideband (UWB) systems, where the bandwidth used for transmission is much
larger than the bandwidth or rate of information being sent. We have developed
several frequency domain methods for channel estimation and synchronization
in ultra-wideband systems, which yield high-resolution estimates of all relevant
channel parameters by sampling a received signal below the Nyquist rate. Fur-
thermore, we have proposed algorithms that are suitable for identification of
more realistic UWB channel models, where a received signal is made up of
pulses with different pulse shapes. Our approach can be generalized to the case
when the channel parameters are estimated from multiple frequency bands with
highest signal-to-noise ratio, which allows one to maximize the estimation per-
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formance, given a constraint on the acceptable sampling rate in a system. We
have also considered a multiresolution version of such schemes, which provides
unique advantages over existing techniques in terms of computational complex-
ity and acquisition speed.

Multidimensional sampling theory

We have considered possible extensions of our sampling results to the two-
dimensional case and developed exact sampling schemes and reconstruction
formulas for some classes of parametric non-bandlimited signals, such as sets
of 2-D Diracs, polygons or signals with piecewise polynomial boundaries. We
focused on developing sampling schemes for signals with M degrees of freedom
that require on the order of M (or at most M2) samples, and algorithms that
can recover such signals with high numerical precision. We analyzed in detail
a periodic set of 2-D Diracs and extended the results to more complex objects
such as lines and polygons. Unlike most multidimensional sampling schemes,
the methods we propose perfectly reconstruct such signals from a finite num-
ber of samples in the noiseless case. Similarly to the 1-D case, some of the
techniques we used were already encountered in the context of high-resolution
harmonic retrieval. In particular, SVD-based methods and the annihilating fil-
ter approach are both explored as inherent parts of the developed algorithms.
We have also considered an alternative sampling approach, which exploits the
properties of a signal in the Radon transform domain. We showed that by tak-
ing a finite number of “filtered” line integrals, the problem can be reduced to
its one-dimensional equivalent, which is much more convenient for algorithmic
implementation. Such an approach allowed us to develop exact sampling results
for 2-D Diracs, polygons or signals with piecewise polynomial boundaries. That
is, we showed that one can perfectly reconstruct these signals from a finite set of
samples of their Radon transform. This led to simpler reconstruction algorithms
compared to “true” 2-D schemes, and is applicable to more general classes of
finite complexity signals.

7.2 Future Research

In this thesis, we explored both theoretical and practical aspects of sampling
theory for classes of parametric non-bandlimited signals. We tried to point
to potentials and limitations of the new framework, however, the topics we
considered are far from being exhausted. In the following, we describe possible
directions for future theoretical work and some areas for practical contributions.

Jitter analysis, model mismatch and filter design issues

As a follow-up to our work on problems in sampling theory, there are several
interesting topics that one can explore further. Namely, in all our constructions,
we assumed perfect acquisition devices and focused primarily on noise analy-
sis. In practice, one has to take into account imperfections of the anti-aliasing
filter, quantization issues or the presence of jitter in the sampling process. For
example, in the absence of noise, a uniform set of samples taken at the rate of
innovation is sufficient for perfect reconstruction of a signal. In practice, one
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must use oversampled schemes in order to improve robustness to noise, however,
whether oversampling is sufficient to compensate for the effects of jitter is still
not well understood. Similarly, in our analysis, we have only briefly touched
upon the problem of model mismatch. Therefore, it is of interest to develop
better mathematical understanding of the effect of jitter and filter imperfec-
tions (in particular, phase distortion) on the reconstruction performance. Also,
it would be important to consider more realistic classes of anti-aliasing filters
and develop a formal framework for analyzing model mismatch.

Local reconstruction schemes with a Gaussian kernel

The problem of developing sampling schemes for aperiodic signals with finite
rate of innovation turned out to be more challenging than we had originally
assumed. While in the simple case of a set of Diracs we were able to derive
exact formulas using the Gaussian sampling kernel, we had to modify original
schemes to overcome the problem of numerical ill-conditioning in the presence of
noise and develop techniques for extending the results to more complex classes
of signals. Despite all these modifications, we have seen that the Gaussian
schemes are very sensitive to the choice of the width (σ) of the sampling kernel.
Specifically, we showed that the optimal width of the kernel depends on the
size of the reconstruction window and the average spacing between the Diracs.
In this context, it would be interesting to investigate novel, multiresolution
reconstruction algorithms, akin to those presented in Section 4.5, where one
would first obtain a coarse approximation of the signal and then perform precise
reconstruction by windowing the signal and estimating the parameters locally
(i.e. in each window separately). Somewhat related to that is the problem of
developing iterative reconstruction methods, where one could obtain a coarse
estimate of the signal in the first step, and then perform successive refinement
in each iteration. This problem is relevant to the 2-D case as well.

Extending the results to other classes of signals

So far, we have focused on developing exact sampling schemes for some specific
classes of signals with finite rate of innovation, such as non-uniform splines and
piecewise polynomials, where the innovation is contained in discontinuities (ei-
ther in the signal itself or in its derivatives). In such a case, we were able to
convert a set of samples into a sum of exponentials and identify the innovative
part of a signal using harmonic retrieval methods. Thus a natural question that
arises is the following: what other types of innovation can be identified and what
are appropriate reconstruction methods? For example, frequency-modulated
signals (where the modulating signal is of finite rate of innovation) also belong
to the class of parametric non-bandlimited signals, yet one cannot use the pre-
sented approach to reconstruct the signal. Therefore, it would be interesting to
generalize our results to other classes of parametric non-bandlimited signals and
investigate alternative computational tools that could possibly allow for simpler
reconstruction algorithms. Yet, one of the most challenging problems is the
development of new two-dimensional representations for images. This is closely
related to the sampling problem for 2-D signals, since the latter can also be
viewed as the problem of signal representation through a set of samples. In this
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context, one possible research direction is to further investigate the possibility
of exploiting the signal structure in the Radon transform domain.

Applications to communications and wireless sensor networks

Along with theoretical research in sampling theory, it is of interest to further ex-
plore its applications to communication problems. As we have argued through-
out this thesis, one of the most promising application areas is UWB technology,
still there are several open problems that one can investigate next. One topic
of interest is to investigate the possibility of having some kind of hybrid syn-
chronization schemes that would combine the advantages of various techniques.
For example, subspace methods can acquire a received signal much faster than
the schemes based on matched filters, however, matched filters are more ro-
bust in estimating multiple closely spaced signal components. Therefore, one
can use subspace methods for coarse (and fast) synchronization, and then use
the approach based on matched filters in order to obtain precise estimates of
multipath components. Besides, it would be interesting to investigate appli-
cations to high-speed communications and explore novel methods for systems
with non-impulsive signaling (such as multiband OFDM). Another application
area is wireless sensor networks, where it is of interest to investigate algorithmic
foundations for real-time distributed signal processing, in particular, under lim-
ited communication and computation resources. For example, one could further
investigate problems of distributed and non-uniform sampling by taking advan-
tage of the correlation among sensed data, and explore multiresolution sampling
schemes, among other topics.
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