848 research outputs found

    Processor allocation strategies for modified hypercubes

    Get PDF
    Parallel processing has been widely accepted to be the future in high speed computing. Among the various parallel architectures proposed/implemented, the hypercube has shown a lot of promise because of its poweful properties, like regular topology, fault tolerance, low diameter, simple routing, and ability to efficiently emulate other architectures. The major drawback of the hypercube network is that it can not be expanded in practice because the number of communication ports for each processor grows as the logarithm of the total number of processors in the system. Therefore, once a hypercube supercomputer of a certain dimensionality has been built, any future expansions can be accomplished only by replacing the VLSI chips. This is an undesirable feature and a lot of work has been under progress to eliminate this stymie, thus providing a platform for easier expansion. Modified hypercubes (MHs) have been proposed as the building blocks of hypercube-based systems supporting incremental growth techniques without introducing extra resources for individual hypercubes. However, processor allocation on MHs proves to be a challenge due to a slight deviation in their topology from that of the standard hypercube network. This thesis addresses the issue of processor allocation on MHs and proposes various strategies which are based, partially or entirely, on table look-up approaches. A study of the various task allocation strategies for standard hypercubes is conducted and their suitability for MHs is evaluated. It is shown that the proposed strategies have a perfect subcube recognition ability and a superior performance. Existing processor allocation strategies for pure hypercube networks are demonstrated to be ineffective for MHs, in the light of their inability to recognize all available subcubes. A comparative analysis that involves the buddy strategy and the new strategies is carried out using simulation results

    Subcube embeddability and fault tolerance of augmented hypercubes

    Full text link
    Hypercube networks have received much attention from both parallel processing and communications areas over the years since they offer a rich interconnection structure with high bandwidth, logarithmic diameter, and high degree of fault tolerance. They are easily partitionable and exhibit a high degree of fault tolerance. Fault-tolerance in hypercube and hypercube-based networks received the attention of several researchers in recent years; The primary idea of this study is to address and analyze the reliability issues in hypercube networks. It is well known that the hypercube can be augmented with one dimension to replace any of the existing dimensions should any dimension fail. In this research, it is shown that it is possible to add i dimensions to the standard hypercube, Qn to tolerate (i - 1) dimension failures, where 0 \u3c i ≤ n. An augmented hypercube, Qn +(n) with n additional dimensions is introduced and compared with two other hypercube networks with the same amount of redundancy. Reliability analysis for the three hypercube networks is done using the combinatorial and Markov modeling. The MTTF values are calculated and compared for all three networks. Comparison between similar size hypercube networks show that the augmented hypercube is more robust than the standard hypercube; As a related problem, we also look at the subcube embeddability. Subcube embeddability of the hypercube can be enhanced by introducing an additional dimension. A set of new dimensions, characterized by the Hamming distance between the pairs of nodes it connects, is introduced using a measure defined as the magnitude of a dimension. An enumeration of subcubes of various sizes is presented for a dimension parameterized by its magnitude. It is shown that the maximum number of subcubes for a Qn can only be attained when the magnitude of dimension is n - 1 or n. It is further shown that the latter two dimensions can optimally increase the number of subcubes among all possible choices
    • …
    corecore