160 research outputs found

    An Enhanced Reversible Data Hiding Technique for Coloured Images

    Get PDF
    To maintain image contents confidentiality and to recover original image, there is a need of Reversible Data Hiding scheme. This paper proposes an enhanced reversible data hiding technique for the coloured image. All previous methods embed data by reversibly vacating room from the encrypted images, which may be subject to some errors on data extraction or image restoration. The proposed method embeds data by reserving room before encryption with a traditional RDH algorithm. It is easy for the data hider to reversibly embed data in the encrypted image. This paper also concerns with a method that embeds the data invisibly into an image. The transmission and exchange of image also needs a high security. To achieve a security, Visual Cryptography is used. Visual cryptography maintains security of a cover media and also it will not make a use of encryption key. Hence, it is less prone to attack. The proposed method can achieve real reversibility, that is, data extraction and image recovery are free of any error

    Data Transfer through an Image and Its Recovery Causing Minimum Distortion in the Carrier Image: A Survey

    Get PDF
    This paper, tries to address the problem of transmitting the huge amount of data over a communication channel hidden into an image and making sure that there is minimum distortion created into the image carrying that secret data. In this project the sender or the data owner who wants to send his data first encrypts the data and then store that encrypted data in such an efficient way that it required minimum number of bits to be altered to hide the data into an Image. This efficiency is created using the LFSR algorithm which is applied on the secret key which in turn creates a unique set of keys which are checked and used for hiding the data. The data too is not hidden sequentially into an image, it is hidden randomly based on the secret key making it more complicated. Once the data is hidden the image the, it is encrypted using the AES algorithm. Here too it adds the encryption in parallel where the image is divided into equal parts and then the AES algorithm is applied to all the parts of the image simultaneously, thus saving our time in the encryption process. Thus shows a significant time saving in case the large images are used. This image when encrypted is send to the receiver and at the receivers end ,the one who has the correct keys can only get back the original image and the secret data. This makes sure that the receiver get the correct data and the image with minimum distortion

    Separable Reversible Data Hiding in Encrypted Images Based on Two-Dimensional Histogram Modification

    Get PDF
    An efficient method of completely separable reversible data hiding in encrypted images is proposed. The cover image is first partitioned into nonoverlapping blocks and specific encryption is applied to obtain the encrypted image. Then, image difference in the encrypted domain can be calculated based on the homomorphic property of the cryptosystem. The data hider, who does not know the original image content, may reversibly embed secret data into image difference based on two-dimensional difference histogram modification. Data extraction is completely separable from image decryption; that is, data extraction can be done either in the encrypted domain or in the decrypted domain, so that it can be applied to different application scenarios. In addition, data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme

    An Efficient Data Security System Using Reserve Room Approach on Digital Images for Secret Sharing

    Get PDF
    This paper presents enhancement of d ata protection system for secret communication through common network based on reversible data concealment in encrypted images with reserve room approach. In this paper was implemented for true color RGB image and reserve room approach under multi scale decomposition. The Blue plane will be chosen for hiding the secret text data. Then image is then separated into number of blocks locally and lifting wavelet will be used to detect approximation and detailed coefficients. Then approximation part is encrypted using chaos encryption method. The proposed encryption technique uses the key to encrypt an image and not only enhances the safety of secret carrier informa tion by making the information inaccessible to any intruder having a random method. After image encryption, the data hide r will conceal the secret data into the detailed coefficients which are reserved before encryption. Although encryption achieves certain security effects, they make the secret messages unreadable and unnatural or meaningless. This system is still enhanced with encrypt messages using a symmetric key method. This is the reason a new security approach called reversible data hiding arises. It is the art of hiding the existence of data in another transmission medium to achieve secret communication. The data hidi ng technique uses the adaptive LSB replacement algorithm for concealing the secret message bits into the encrypted image. In the data extraction module, the secret data will be extracted by using relevant key for choosing the encrypted pixe ls to extract th e data. By using the decryption keys, the image and extracted text data will be extracted from encryption to get the original informatio n. Finally the performance of this proposal in encryption and data hiding will be analyzed based on image and data recovery

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely

    Vector-based Efficient Data Hiding in Encrypted Images via Multi-MSB Replacement

    Full text link
    As an essential technique for data privacy protection, reversible data hiding in encrypted images (RDHEI) methods have drawn intensive research interest in recent years. In response to the increasing demand for protecting data privacy, novel methods that perform RDHEI are continually being developed. We propose two effective multi-MSB (most significant bit) replacement-based approaches that yield comparably high data embedding capacity, improve overall processing speed, and enhance reconstructed images' quality. Our first method, Efficient Multi-MSB Replacement-RDHEI (EMR-RDHEI), obtains higher data embedding rates (DERs, also known as payloads) and better visual quality in reconstructed images when compared with many other state-of-the-art methods. Our second method, Lossless Multi-MSB Replacement-RDHEI (LMR-RDHEI), can losslessly recover original images after an information embedding process is performed. To verify the accuracy of our methods, we compared them with other recent RDHEI techniques and performed extensive experiments using the widely accepted BOWS-2 dataset. Our experimental results showed that the DER of our EMR-RDHEI method ranged from 1.2087 bit per pixel (bpp) to 6.2682 bpp with an average of 3.2457 bpp. For the LMR-RDHEI method, the average DER was 2.5325 bpp, with a range between 0.2129 bpp and 6.0168 bpp. Our results demonstrate that these methods outperform many other state-of-the-art RDHEI algorithms. Additionally, the multi-MSB replacement-based approach provides a clean design and efficient vectorized implementation.Comment: 14 pages; journa

    Framework for reversible data hiding using cost-effective encoding system for video steganography

    Get PDF
    Importances of reversible data hiding practices are always higher in contrast to any conventional data hiding schemes owing to its capability to generate distortion free cover media. Review of existing approaches on reversible data hiding approaches shows variable scheme mainly focussing on the embedding mechanism; however, such schemes could be furthermore improved using encoding scheme for optimal embedding performance. Therefore, the proposed manuscript discusses about a cost-effective scheme where a novel encoding scheme has been used with larger block sizes which reduces the dependencies over larger number of blocks. Further a gradient-based image registration technique is applied to ensure higher quality of the reconstructed signal over the decoding end. The study outcome shows that proposed data hiding technique is proven better than existing data hiding scheme with good balance between security and restored signal quality upon extraction of data

    A Secure Approach for Reversible Data Hiding using Visual Cryptography

    Get PDF
    Data is the essential part of communication between sender and receiver. So it needed to be secure and authenticated.Number ofapproaches like Cryptography, Steganography can be used to achieve security of data. Cryptography refers to the study of mathematical techniques and related aspects of Information Security like data confidentiality, integrity and authentication. RDH is gaining lot of importance. RDH is nothing but securely transmitting data inside a cover file, such that data and cover file can be properly recovered at the receiver.This paper gives a keyless reversible data hiding techniquebefore image encryptionto make data hiding process effortless. Also visual cryptographic approach is used for encryption which helps to protect the image during transmission
    • …
    corecore