62,289 research outputs found

    Uniform Proofs of Normalisation and Approximation for Intersection Types

    Full text link
    We present intersection type systems in the style of sequent calculus, modifying the systems that Valentini introduced to prove normalisation properties without using the reducibility method. Our systems are more natural than Valentini's ones and equivalent to the usual natural deduction style systems. We prove the characterisation theorems of strong and weak normalisation through the proposed systems, and, moreover, the approximation theorem by means of direct inductive arguments. This provides in a uniform way proofs of the normalisation and approximation theorems via type systems in sequent calculus style.Comment: In Proceedings ITRS 2014, arXiv:1503.0437

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games

    An efficient decomposition approach for surgical planning

    Get PDF
    This talk presents an efficient decomposition approach to surgical planning. Given a set of surgical waiting lists (one for each discipline) and an operating theater, the problem is to decide the room-to-discipline assignment for the next planning period (Master Surgical Schedule), and the surgical cases to be performed (Surgical Case Assignment), with the objective of optimizing a score related to priority and current waiting time of the cases. While in general MSS and SCA may be concurrently found by solving a complex integer programming problem, we propose an effective decomposition algorithm which does not require expensive or sophisticated computational resources, and is therefore suitable for implementation in any real-life setting. Our decomposition approach consists in first producing a number of subsets of surgical cases for each discipline (potential OR sessions), and select a subset of them. The surgical cases in the selected potential sessions are then discarded, and only the structure of the MSS is retained. A detailed surgical case assignment is then devised filling the MSS obtained with cases from the waiting lists, via an exact optimization model. The quality of the plan obtained is assessed by comparing it with the plan obtained by solving the exact integrated formulation for MSS and SCA. Nine different scenarios are considered, for various operating theater sizes and management policies. The results on instances concerning a medium-size hospital show that the decomposition method produces comparable solutions with the exact method in much smaller computation time

    Straddling the intersection

    Get PDF
    Music technology straddles the intersection between art and science and presents those who choose to work within its sphere with many practical challenges as well as creative possibilities. The paper focuses on four main areas: secondary education, higher education, practice and research and finally collaboration. The paper emphasises the importance of collaboration in tackling the challenges of interdisciplinarity and in influencing future technological developments

    Characterisation of Strongly Normalising lambda-mu-Terms

    Full text link
    We provide a characterisation of strongly normalising terms of the lambda-mu-calculus by means of a type system that uses intersection and product types. The presence of the latter and a restricted use of the type omega enable us to represent the particular notion of continuation used in the literature for the definition of semantics for the lambda-mu-calculus. This makes it possible to lift the well-known characterisation property for strongly-normalising lambda-terms - that uses intersection types - to the lambda-mu-calculus. From this result an alternative proof of strong normalisation for terms typeable in Parigot's propositional logical system follows, by means of an interpretation of that system into ours.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    Inhabitation for Non-idempotent Intersection Types

    Full text link
    The inhabitation problem for intersection types in the lambda-calculus is known to be undecidable. We study the problem in the case of non-idempotent intersection, considering several type assignment systems, which characterize the solvable or the strongly normalizing lambda-terms. We prove the decidability of the inhabitation problem for all the systems considered, by providing sound and complete inhabitation algorithms for them
    • …
    corecore