217 research outputs found

    Generating Relation Algebras for Qualitative Spatial Reasoning

    Get PDF
    Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n≥1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic
    • …
    corecore