4 research outputs found

    Applying knowledge compilation techniques to model-based reasoning

    Get PDF
    Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems

    Model compilation: An approach to automated model derivation

    Get PDF
    An approach is introduced to automated model derivation for knowledge based systems. The approach, model compilation, involves procedurally generating the set of domain models used by a knowledge based system. With an implemented example, how this approach can be used to derive models of different precision and abstraction is illustrated, and models are tailored to different tasks, from a given set of base domain models. In particular, two implemented model compilers are described, each of which takes as input a base model that describes the structure and behavior of a simple electromechanical device, the Reaction Wheel Assembly of NASA's Hubble Space Telescope. The compilers transform this relatively general base model into simple task specific models for troubleshooting and redesign, respectively, by applying a sequence of model transformations. Each transformation in this sequence produces an increasingly more specialized model. The compilation approach lessens the burden of updating and maintaining consistency among models by enabling their automatic regeneration

    In defense of compilation: A response to Davis' form and content in model-based reasoning

    Get PDF
    In a recent paper entitled 'Form and Content in Model Based Reasoning', Randy Davis argues that model based reasoning research aimed at compiling task specific rules from underlying device models is mislabeled, misguided, and diversionary. Some of Davis' claims are examined and his basic conclusions are challenged about the value of compilation research to the model based reasoning community. In particular, Davis' claim is refuted that model based reasoning is exempt from the efficiency benefits provided by knowledge compilation techniques. In addition, several misconceptions are clarified about the role of representational form in compilation. It is concluded that techniques have the potential to make a substantial contribution to solving tractability problems in model based reasoning

    Second generation knowledge based systems in habitat evaluation.

    Get PDF
    Many expert, or knowledge-based, systems have been constructed in the domain of ecology, several of which are concerned with habitat evaluation. However, these systems have been geared to solving particular problems, with little regard paid to the underlying relationships that exist within a biological system. The implementation of problem-solving methods with little regard to understanding the more primary knowledge of a problem area is referred to in the literature as 'shallow', whilst the representation and utilisation of knowledge of a more fundamental kind is termed 'deep'. This thesis contains the details of a body of research exploring issues that arise from the refinement of traditional expert systems methodologies and theory via the incorporation of depth, along with enhancements in the sophistication of the methods of reasoning (and subsequent effects on the mechanisms of communication between human and computer), and the handling of uncertainty. The approach used to address this research incorporates two distinct aspects. Firstly, the literature of 'depth', expert systems in ecology, uncertainty, and control of reasoning and related user interface issues are critically reviewed, and where inadequacies exist, proposals for improvements are made. Secondly, practical work has taken place involving the construction of two knowledge based systems, one 'traditional', and the other a second generation system. Both systems are primarily geared to the problem of evaluating a pond site with respect to its suitability for the great crested newt (Triturus cristatus). This research indicates that it is possible to build a second-generation knowledge-based system in the domain of ecology, and that construction of the second generation system required a magnitude of effort similar to the firstgeneration system. In addition, it shows that, despite using different architectures and reasoning strategies, such systems may be judged as equally acceptable by endusers, and of similar accuracy in their conclusions. The research also offers guidance concerning the organisation and utilisation of deep knowledge within an expert systems framework, in both ecology and in other domains that have a similar concept-rich nature
    corecore