3 research outputs found

    An Experimental Nexos Laboratory Using Virtual Xinu

    Get PDF
    The Nexos Project is a joint effort between Marquette University, the University of Buffalo, and the University of Mississippi to build curriculum materials and a supporting experimental laboratory for hands-on projects in computer systems courses. The approach focuses on inexpensive, flexible, commodity embedded hardware, freely available development and debugging tools, and a fresh implementation of a classic operating system, Embedded Xinu, that is ideal for student exploration. This paper describes an extension to the Nexos laboratory that includes a new target platform composed of Qemu virtual machines. Virtual Xinu addresses two challenges that limit the effectiveness of Nexos. First, potential faculty adopters have clearly indicated that even with the current minimal monetary cost of installation, the hardware modifications, and time investment remain troublesome factors that scare off interested educators. Second, overcoming the inherent complications that arise due to the shared subnet that result in students\u27 projects interfering with each other in ways that are difficult to recreate, debug, and understand. Specifically, this paper discusses porting the Xinu operating systems to Qemu virtual hardware, developing the virtual networking platform, and results showing success using Virtual Xinu in the classroom during one semester of Operating Systems at the University of Mississippi

    A Down-to-Earth Educational Operating System for Up-in-the-Cloud Many-Core Architectures

    Get PDF
    We present Xipx, the first port of a major educational operating system to a processor in the emerging class of many-core architectures. Through extensions to the proven Embedded Xinu operating system, Xipx gives students hands-on experience with system programming in a distributed message-passing environment. We expose the software primitives needed to maintain coherency between many cores in a system lacking specialized caching hardware. Our proposed series of laboratory assignments adds parallel thread execution and inter-core message passing communication to a well-established OS curriculum

    Compiler Construction with a Dash of Concurrency and an Embedded Twist

    No full text
    We describe the renovation of our compilers curriculum to meld together an established object-oriented textbook compiler with an inexpensive embedded target platform. The result is a modern compiler implementation course with aspects of concurrency and embedded systems, and a palpable increase in student enthusiasm. We discuss the trade-offs in retargeting our compiler, gauge the difficulty of supporting thread-level concurrency in our target language, and outline the resulting structure of the course and integration with the rest of our computer science curriculum
    corecore