
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

10-1-2011

An Experimental Nexos Laboratory Using Virtual
Xinu
Paul Ruth
Renaissance Computing Institute

Dennis Brylow
Marquette University, dennis.brylow@marquette.edu

Accepted version. Published as part of the proceedings of the conference, FIE 2011: 41st Annual
Conference on Frontiers in Education (October 2011): S2E-1 - S2E-6. DOI. © 2011 Frontiers in
Education Clearinghouse. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213077751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1109/FIE.2011.6143069

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

1

An Experimental Nexos Laboratory

Using Virtual Xinu

Paul Ruth
RENCI/UNC-Chapel Hill

Chapel Hill, NC

Dennis Brylow
Mathematics, Statistics and Computer Science

Marquette University

Milwaukee, WI

Abstract - The Nexos Project is a joint effort between Marquette University,

the University of Buffalo, and the University of Mississippi to build curriculum

materials and a supporting experimental laboratory for hands-on projects in

computer systems courses. The approach focuses on inexpensive, flexible,

commodity embedded hardware, freely available development and debugging

tools, and a fresh implementation of a classic operating system, Embedded

Xinu, that is ideal for student exploration.

This paper describes an extension to the Nexos laboratory that

includes a new target platform composed of Qemu virtual machines. Virtual

Xinu addresses two challenges that limit the effectiveness of Nexos. First,

potential faculty adopters have clearly indicated that even with the current

minimal monetary cost of installation, the hardware modifications, and time

investment remain troublesome factors that scare off interested educators.

Second, overcoming the inherent complications that arise due to the shared

subnet that result in students’ projects interfering with each other in ways

that are difficult to recreate, debug, and understand.

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

2

Specifically, this paper discusses porting the Xinu operating systems to

Qemu virtual hardware, developing the virtual networking platform, and

results showing success using Virtual Xinu in the classroom during one

semester of Operating Systems at the University of Mississippi.

Index Terms – Computer Science Education, Courseware, Computer Systems,

Virtual Machines.

Introduction

The study of computer systems continues to be one of the core

elements of mainstream Computer Science curricula. The Joint

IEEE/ACM Task Force on the Model Curriculum for Computing suggests

that Architecture, Organization, and Operating Systems compose 19%

of the core hours of an undergraduate computer science program [1].

Most computer science programs require a series of systems courses

that explore both the fundamental building blocks that underlie

software development and the powerful abstractions that have allowed

Computer Scientists and Software Engineers to build the sophisticated

software that permeates the modern world.

Prior work has confirmed that core systems courses that include

an experimental environment allow students to learn by doing,

reinforce concepts covered in lectures, and encourage a concrete

understanding of the details within the larger concepts [2]. However,

constructing pedagogically appropriate infrastructure for hands-on

experimentation at the lowest levels of systems software remains

difficult and expensive, often requiring faculty and facility resources

disproportionate to other core courses.

In this work we build upon Project Nexos [3], an established

curriculum development effort that aims to add flexible, inexpensive

embedded system laboratory experiences to a wide spectrum of core

undergraduate courses. Nexos-based laboratories are in use or under

construction at half a dozen colleges and universities, and are based

upon freely-available open source tools combined with inexpensive

consumer appliances like the Linksys WRT54GL wireless router.

This paper presents Virtual Xinu, a significant new platform for

use in the Nexos curriculum effort. The novel contributions of this work

include:

 Extensions to the Embedded Xinu educational operating system
that allow the same core kernel to run on either physical

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

3

hardware or Qemu [4] virtual machine with a single compile-
time option,

 Modifications to existing Project Nexos curriculum modules that
allow users to use either physical or virtual machines, whichever

best suit the activity at hand, and

 New curriculum modules specific to the virtual platform that
enable students to work with new and interesting system

components.

Our goal from the outset was not to replace the real embedded

hardware that is the hallmark of a Nexos-based lab, but rather to

supplement and extend it with the power of virtualization. There are

multiple advantages to a combined laboratory with both physical and

virtual targets, including improved scalability, lower construction costs,

stricter network isolation, and expanded debugging capabilities.

The following sections of this paper discuss related work,

present an overview of Virtual Xinu, and evaluate Virtual Xinu in the

context of an upper-division course on operating systems.

Prior and Related Work

Our work is descended from Purdue University’s Xinu Laboratory

[5], first developed in the 1980’s as a vehicle for systems education

and research. Subsequent work in the 2000’s produced Embedded

Xinu [3], a modern port of the original Xinu design with a focus on

open source tools and resource-constrained, embedded RISC

platforms. Curriculum design and evaluation efforts have shown the

utility of this teaching platform in undergraduate courses including

computer organization [6], operating systems [7], embedded systems

[3], networking [8], and compiler construction [9].

Harvey Mudd’s TinkerNet Project [10] is another curriculum

effort descended from the Xinu design, emphasizing experimental

networking without the special-purpose hardware required by the

original Xinu plan. However, the presumption of a functional

networking stack on the system makes TinkerNet unsuitable for low-

level operating system and hardware system work. TinkerNet’s

reliance on desktop PCs as hardware targets contributes significantly

to the cost and space investments required.

Many alternative educational operating systems have been

proposed, including those based on simulation (Nachos [11]), bare

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

4

hardware, and embedded systems (BabyOS[12]), but none of these

systems have withstood the test of time to the extent that the Xinu

kernel has.

Special sessions and papers have recently explored the growing

role of virtualization in systems courses, including Xen Worlds [13], V-

NetLab [14] and the SOFTICE [15] projects. These efforts concentrate

on production operating system environments like Linux, and

consequently report very limited scaling even on powerful hardware.

In contrast, Virtual Xinu offers much greater scaling, and lower

student learning curves.

Background

The simple but powerful RISC-based Embedded Xinu kernel

provides an understandable platform for teaching low-level systems

courses. Nexos-based laboratories support Embedded Xinu on several

embedded hardware platforms, but the most common is the Linksys

WRT54GL wireless router. The WRT54GL employs a Broadcom BCM

47XX/53XX system-on-a-chip with a 200MHz, 32-bit embedded MIPS

architecture with 16 MB of RAM. Further, it has four 100 Mbit/s

Ethernet interfaces and a WAN interface. Most importantly, the

WRT54GL includes two UART serial ports, which are shipped unused.

The use of a RISC architecture and a limited number of peripheral

devices makes this real embedded device simple enough for advanced

undergraduates.

Figure 1 shows a typical Nexos laboratory composed of a central

Xinu server that manages a pool of dedicated backend targets, such as

the WRT54GL. Each router is modified to include serial interfaces that

the server uses to control the backend and provide access to the

backend’s console. The backends' consoles are connected through a

serial annex to the server allowing simultaneous access to the serial

interfaces to all backends. In addition, the server and backends share

a private Ethernet. The private Ethernet serves dual purposes as both

an isolated playground for networking projects and as the medium

over which the backend can network boot the students’ Xinu kernels.

The server is connected to a production network through which

students access the Xinu server. The production network is usually the

general-purpose network connecting the machines in an existing

computer laboratory and must be separated from the shared

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

5

playground to prevent misbehaving projects from negatively affecting

the rest of the domain.

Most of the complexity of the laboratory is hidden from the

students. They are given a package of source code that includes an

appropriate makefile for invoking the cross-compiler that produces the

MIPS kernel image. After building a kernel image, students access the

backends through well defined software on the server that allows them

to temporarily “checkout” a backend and transfer a kernel to the

assigned backend, boot the kernel, and pipe console I/O to a terminal.

The automated laboratory interface allows the students to focus on the

concepts rather than struggling with the steps needed to run their

code.

Project Nexos is more than an embedded systems laboratory.

The integrated Nexos curriculum is a fundamental part of the project.

The curriculum employs hands-on projects revolving around the

Embedded Xinu Operating System. The Embedded Xinu kernel is

designed to be small, elegant, and understandable by undergraduates

that are new to kernel development. The simplicity and elegant design

of the kernel allows for tractable hand-on projects that reinforce

sophisticated concepts learned in the classroom. Instructors can use

predefined projects from the Nexos curriculum or can easily remove or

modify key functionality of the operating system. The partially

implemented kernel can be given to the students who are asked to re-

implement core functionality or modify kernel-level algorithms and

data structures.

Virtual Xinu Laboratory

The goal of the virtual Xinu laboratory is to increase the range

of curriculum that is possible without sacrificing any of the realistic

hands-on feel of the traditional Embedded Xinu Laboratory. The

contributions of Virtual Xinu are:

 Enabling the creation of an entire Embedded Xinu laboratory
that exists only in software,

 Adding functionality and curriculum that take advantage of the
flexibility of virtualization, and

 Simplify the adoption of the Nexos platform.

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

6

The following sections present the mechanisms that enable

Virtual Xinu including answering the primary challenges to porting the

kernel to the Qemu platform, the techniques used to instantiate

isolated virtual environments, and a description of the curriculum used

in the classroom.

Fundamentally, Virtual Xinu differs from Embedded Xinu by

using Qemu virtual machines instead of wireless routers. A virtual

machine is a software emulation of computer hardware. An operating

system can interact with a virtual machine as if it were real hardware.

Figure 2 depicts the virtual laboratory. The virtual laboratory functions

like the embedded laboratory but is consolidated into a single PC.

Users interact with mutually isolated virtual environments of virtual

backend targets that are created on-demand. Each virtual

environment is owned by a single user and executes his or her

software in an isolated sandbox. Typically each virtual environment is

composed of a single virtual machine, however multiple virtual

machines can be instantiated to support networking projects.

Virtualization allows for backend targets to be a mix of architectures as

depicted in the figure. However, to date, only the MIPS version of Xinu

has been ported to the virtual laboratory.

Students use a modified makefile and compiler chain to build a

Xinu kernel for the virtual target. Simple compile-time options have

been added to the Nexos platform to instruct the compiler to build for

the virtual target. However advanced students can implement kernels

that identify the hardware at boot time and adapt the configuration.

Students run their kernels by invoking the same well-defined software

used to run on the embedded hardware. When a student wants to run

their Xinu kernel, a virtual environment is instantiated on-demand and

the console of the primary backend (often the only backend) is piped

back to the user. From the point-of-view of the user, the basic

functionality of the virtualized laboratory is accessed in nearly an

identical way as the embedded laboratory.

Virtual Xinu provides additional functionality and curriculum that

is not available in the current version of Embedded Xinu. The

additional functionality includes:

Debugging. A standard debugger (e.g. gdb) can be attached to

the executing Xinu kernel. For the first time students can step through

executing Xinu code which not only aids in completing the

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

7

assignments, but also allows for experimentation with the internal data

structures and flow control of fully functional kernels.

Isolated network. Students working on projects involving the

networking stack can instantiate isolated virtual environments. Virtual

machines within an environment can send arbitrary network traffic.

The mutually isolated virtual environments eliminate the cross talk

allowed in the current shared ‘warzone’ preventing the actions of one

student from affecting other students.

Scale. Using virtualization, there is no hard limit on the number

of virtual machines that can be instantiated. A modern PC can support

hundreds simultaneously running student projects. Performance

degrades as more virtual machines are instantiated. However learning

is not affected by the performance of individual machines.

Porting Xinu to Qemu

The greatest amount of time and effort required to develop

Virtual Xinu was in porting the Xinu Operating System to the Qemu

virtual platform. Existing implementations of Xinu run on various

wireless routers using MIPS CPUs, most notably the Linksys WRT54GL.

Qemu can emulate a variety are architectures including MIPS. Qemu

was chosen for its no-cost open source software, its prolific distribution

(it is included with most Linux distributions) and the existing MIPS

codebase for the wireless routers.

Admittedly, Qemu provides far less performance than the more

popular paravirtualized and hardware supported virtualization

mechanisms. However, Qemu’s realistic hardware emulation and its

ability to virtualize MIPS hardware on a standard x86 PC makes it ideal

as a platform for experimenting and learning through the Nexos

curriculum.

Although choosing a new machine that with the same CPU

architecture reduces the complexity of porting the Xinu to a virtual

platform only the CPU is the same. The motherboard and nearly all of

the peripherals are different. In addition, the virtual hardware can

emulate many more types of devices that are not available on the

static embedded hardware. For example, the virtual machines can be

instantiated with a PCI bus, IDE drives, sound cards, USB controllers,

a mouse, a keyboard, and other devices. The current version of Virtual

Xinu includes all of the modifications required to complete the existing

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

8

curriculum including the serial ports and network interface as well as

adding the required support for the Programmable Interrupt Controller

(PIC). Further, Virtual Xinu supports an IDE drive, which for the first

gives Nexos support for a standard block device.

Serial Device Driver. The Nexos laboratory requires the use of

a serial devices and many of the projects prescribed by the curriculum

make use of a serial interface. The Qemu emulator provides a UART

and, by default, uses it for console data. The WRT54GL uses a physical

UART for console data and the first several projects prescribed by the

curriculum are implemented using kernels that only use the console

device. Further, one of the first projects is to implement a synchronous

device driver for the UART. The Qemu virtualized UART requires very

little modification of the existing projects and only requires a change to

the location where the UART is mapped in memory space. Functionally,

there are no other differences, however Qemu does not emulate

concurrently executing devices. Although this is an observable

difference between the platforms and does not properly represent real

hardware, it does provide a teaching opportunity. A discussion of how

this is incorporated into the curriculum is described in the section on

curriculum.

Network Device Driver. Another benefit of Qemu is that it

emulates an NE2000 NIC. The NE2000 was among the most popular of

the early Ethernet NICs. This popularity has led to drivers in nearly all

major operating systems as well as it being the choice of many virtual

platforms. A completely new NE2000 network driver was implemented

for the virtual platform. The new driver replaces the Broadcom driver

used on the WRT54GL and works with the existing Xinu network stack.

The driver sits below Xinu’s Ethernet (layer-2) software. All networking

curriculum for layer-2 or higher that was created for the Embedded

Laboratory will work unchanged with Virtual Xinu.

Programmable Interrupt Controller. The existing embedded

platforms are designed to be small static devices. There are usually a

small number of integrated devices and no need to expand the system

by adding devices after production. The small static number of devices

simplifies the WRT54GL and other wireless routers and allows them

use only the eight interrupt lines connected directly to the cpu. The

Qemu virtual platform has a large array of possible devices and new

devices can be implemented in the future. Qemu handles this

additional complexity by providing a virtual Programmable Interrupt

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

9

Controller (PIC) that provides a large number of interrupts that are

organized hierarchically.

The PIC requires significant modification to Xinu’s interrupt

handler. These modifications are complete and asynchronous device

handling is possible. The NE2000, advanced serial devices, and the

IDE device each make use of the modified interrupt handler.

IDE Block Device. One of the benefits of virtualization is the

increased amount of available devices. Virtual Xinu adds an IDE block

storage device to the curriculum. The virtual IDE device is connected

using a virtual PCI bus. Virutal Xinu provides an implementation of the

IDE driver, a block-level interface for reading and writing, as well as a

simple file system that uses the block-level interface.

One of the advantages of the virtual block device is the ability to

analyze and edit the block after the virtual machine shuts down (or

crashes). Qemu emulates a block device by attaching to a file on the

host machine. A user creates an empty file (probably using a utility

like ‘dd’). When the virtual machine is instantiated it attaches to the

empty file. When a block is read or written by the virtual machine the

emulator reads or writes to the file. A student who is implementing a

file system debug their work by using a hex editor to view the blocks

that was written by the kernel or manually write blocks for the virtual

machine to read.

Isolated Virtual Environments

Students in a networking course are often implementing

portions of the TCP/IP network stack or even designing and

implementing their own network protocols. The Embedded Xinu

Laboratory uses a single shared physical network over which students

can send their experimental and developmental network traffic. This

shared subnet results in students’ projects interfering with each other

in ways that are difficult to recreate, debug, and understand.

Virtual Xinu Environments have mutually isolated virtual

networks. Multiple users can instantiate individual Virtual Xinu

Environments on a shared server and will not interfere with each

other’s development and debugging tasks. Further, more complicated

network topologies can be created on-demand. For example, a single

user can create a Virtual Xinu Environment composed of multiple

isolated virtual networks and connect them with a Virtual Xinu kernel

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

10

that can route layer-3 traffic between the virtual subnets. This can be

extended to include on-demand deployment of a large number of

subnets in an arbitrary topology.

Central to the effectiveness of Virtual Xinu Environments is the

on-demand creation of isolated virtual networks. Nexos leverages

existing techniques from the cloud computing community to create

tunneled virtual networks [16, 17].

Figure 3 shows two mutually isolated Virtual Xinu Environments.

In the figure, the Xinu Server is hosting four virtual machines (two

blue virtual machines and two orange virtual machines). Each virtual

machine is a Qemu process executing on the Xinu Server. From a Xinu

kernel’s point-of-view, the virtual machine presents an emulated

NE2000 NIC referred to as ETH0. The physical host machine (Xinu

Server) sees the virtual machine as a process. The virtual machine’s

externally facing emulated hardware must be accessible by the host,

which is responsible for handling each device in an appropriate

manner.

Qemu network interfaces can be handled through the tun/tap

device abstraction. A tun/tap device is a kernel abstraction that

behaves as a NIC but is used to pass layer-2 (Ethernet) frames to a

process instead of to an external physical network. When the virtual

machine is instantiated, it can be configured to attach its emulated

NIC to an existing tun/tap device. Once this connection is established,

the Xinu virtual machines can route network traffic to its virtual ETH0

and the traffic will be passed to the host via the tun/tap device. The

host can also route its traffic through the tun/tap device and that

traffic will be sent to the virtual machine which will handle it as if is

was arriving from a physical network. Finally, Nexos can connect

multiple virtual machines by attaching their tun/tap devices using a

standard Linux bridge. The result is an isolated layer-2 network

connecting multiple virtual Xinu kernels.

It should be noted that it is possible to bridge a virtual network

to an external physical network giving a virtual machine access to the

local domain or even the global Internet. However, it is not

recommended to allow students to generate network traffic that is

released to a production network.

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

11

Curriculum Modifications and Experience

The similarities between real hardware and Qemu virtualization

not only simplifies transitioning between Embedded and Virtual Xinu

but provides a realistic platform on which students can learn systems

concepts. As virtual machines become prolific in mainstream

computing they blur the line between physical and virtual hardware.

Experience using production quality virtual hardware is as valuable as

experience using physical hardware. By changing a few compilation

options and selecting a different set of device drivers, students are

able to run the same experimental operating system kernel source

code on both real router hardware and on virtual hardware. This

bifurcated support for both real and virtual hardware keeps the

curriculum grounded in genuine embedded systems, while leveraging

the many advantages offered by virtualization.

The Virtual Xinu laboratory and its modified curriculum have

been used over one semester of upper-level Operating Systems at the

University of Mississippi (CSCI 423). The class contained 25 junior and

senior level students that we placed in pairs and asked to complete

five projects over the course of the semester. The projects were

similar to ones used over the in previous semesters. For each project

the students were given a partially implemented Xinu kernel and were

asked to implement missing functionality or to modify an existing

kernel algorithm and/or data structure.

The curriculum was modified to incorporate features enabled by

the Virtual Xinu Laboratory. Specifically, for each project the students

were asked to develop a kernel that would correctly execute on both

the WRT54GL hardware and the Qemu virtual hardware. Most students

were able to successfully develop a kernel that correctly executed on

both platforms and were able to use the hands-on experience to

reinforce operating systems concepts from lecture.

The experience using the Virtual Xinu in the classroom led to a

few observations on the effect it has on the learning outcomes of

students. Although each of these observations applies to many or all of

the projects, they were made apparent during the first project, which

is to write synchronous device driver for the UART. The driver is

necessary so that the students can read/write console data for the

remainder of the projects. It is essentially the Xinu “Hello, World”

program. The solution involves repeatedly checking the UART to see if

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

12

data (a single character) is ready to be read then reading the

character after it is ready and a similar process for writing data to the

UART.

Using two different platforms helps the students better

understand issues involved with writing software that interacts directly

with hardware. Specifically, in order to write code that runs on both

the virtual and physical hardware, the student had to understand that

devices use memory mapped I/O and different hardware platforms can

map I/O devices to different locations in memory. This not only

reinforces I/O concepts learned in class but also forces students to

truly understand low-level programming concepts such as pointers. For

the synchronous serial driver the students must understand that the

two platforms have mapped the UART to different location in the

memory address space and to find the correct location the kernel

much check the cpu’s ID to determine the platform that they are

using.

Qemu teaches a subtle (and unexpected) lesson due to its

slightly unrealistic emulation of devices. Specifically, Qemu does not

concurrently execute independent devices. The effect is that when a

student uses the virtual platform he or she can write data to the UART

and the data is completely processed by the UART before control is

passed back to the kernel. For this reason student can incorrectly

implement their device driver by not waiting for the device to be ready

to receive data (if all data is processed immediately then the UART will

always report being ready to accept data and does not need to be

checked). If a student does this, he or she will get correct behavior on

the virtual platform but incorrect behavior on the WRT54GL. When

students make this mistake and ask questions, the answer reinforces

the concept of concurrency in a way that is not possible using only

lecture.

Finally, the ability to attach a debugger to a running Xinu kernel

is very useful. Specifically, the debugger is useful for developing the

synchronous driver because it allows a student to step through their

code and examine variables and flow control before the kernel has the

ability to print text to the console. However, debuggers are not only

completing the projects but also for understanding existing kernel data

structures and algorithms. Stopping the kernel on a strategic step and

examining a queue of processes or a linked list of free memory blocks

is often the best way to understand those data structures. Many

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

13

students reported that they do not know how they could have

completed the projects without the debugger. However, others

reported that using the debugger was too difficult.

Conclusion

The Nexos project continues to modernize computer systems

education through the development of its integrated hands-on

curriculum and laboratory. Virtual Xinu will become invaluable tool

within the Nexos curriculum and will allow increased numbers of

students and faculty to benefit from this proven hands-on learning

environment.

The Virtual Xinu Laboratory described in this paper has several

advantages over the existing Xinu Laboratories. Instructors who want

to try Nexos before committing to it can use its simple, no-cost

playground. Beginning student will be forced to understand differences

between platform and subtle issues related to concurrency. More

seasoned users will appreciate the debugger and the elimination of the

network “warzone” that inhibited much of the advanced networking

curriculum.

References

[1] Joint IEEE Computer Society / ACM Task Force on the Model Curricula for

Computing. Approved final draft of the computer science volume, Dec

2001.

[2] S. Donovan and J. Bransford. How Students Learn: History, Mathematics,

and Science in the Classroom. National Academies Press, January

2005.

[3] D. Brylow and B. Ramamurthy, “Nexos: A next generation embedded

systems laboratory,” SIGBED Review, 6(1), January 2009. ISSN 1551-

3688.

[4] F. Bellard, “Qemu, a fast and portable dynamic translator,” in proceedings

of the USENIX Annual Technical Conference, 2005.

[5] D. E. Comer and T. V. Fossum, Operating System Design: The XINU

Approach, PC ed. Prentice Hall, 1988.

[6] D. Brylow, “An experimental laboratory environment for teaching

embedded hardware systems,” in WCAE 2007: Workshop on Computer

Architecture Education, ACM Press, June 2007, pp. 44-51, ISBN: 978-

1-59593-797-1.

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

14

[7] D. Brylow, “An experimental laboratory environment for teaching

embedded operating systems,” in SIGCSE 2008: The 39th ACM

Technical Symposium on Computer Science Education, ACM Press,

March 2008, pp. 192-196.

[8] D. Brylow and K. Thurow, “Hands-On Networking Labs With Embedded

Routers,” in SIGCSE 2011: The 42nd ACM Technical Symposium on

Computer Science Education, ACM Press, March 2011, pp. 309-404.

[9] A. Mallen and D. Brylow, “Compiler Construction With A Dash of

Concurrency and An Embedded Twist,” in SPLASH 2010: Proceedings

of the ACM International Conference Companion on Object Oriented

Programming Systems, Languages and Applications, ACM Press,

October 2010, pp. 161-168.

[10] T. Winters, R. Ausanka-Crues, M. Kegel, E. Shimshock, D. Turner, and

M. Erlinger, “Tinkernet: A Low-cost and Ready-to-deploy Networking

Laboratory Platform,” in Eighth Australasian Computing Education

Conference (ACE2006), ser. Conferences in Research and Practice in

Information Technology. Australian Computer Society, 2006.

[11] W. A. Christopher, S. J. Procter, and T. E. Anderson, “The Nachos

Instructional Operating System,” in USENIX Winter, 1993, pp. 481–

488.

[12] H. Liu, X. Chen, and Y. Gong, “Babyos: a fresh start,” in SIGCSE ’07:

Proceedings of the 38th SIGCSE Technical Symposium on Computer

Science Education. New York, NY, USA: ACM Press, 2007, pp. 566–

570.

[13] B.R. Anderson, A.K. Joines, and T. Daniels, “XenWorlds: Leveraging

Virtualization in Distance Education,” in ITiCSE 2009: Proceedings of

the 14th Annual ACM SIGCSE Conference on Innovation and

Technology in Computer Science Education, ACM Press, July 2009, pp.

293-297.

[14] W. Sun, V. Katta, K. Krishna, and R. Sekar, “V-NetLab: An Approach for

Realizing Logically Isolated Networks for Security Experiments,” in

Proceedings of CSET 2008: USENIX Conference on Cyber Security

Experimentation and Test, 2008, pp. 5:1-5:6.

[15] A. Gaspar, S. Langevin, W. Armitage, and M. Rideout, “Enabling New

Pedagogies in Operating Systems and Networking Courses With State

of the Art Open Source Kernel and Virtualization Technologies,” Journal

of Computing Sciences in Colleges, Vol 23, No 5, May 2008, pp. 189-

198.

[16] Paul Ruth, Junghwan Rhee, Dongyan Xu, Rick Kennell, Sebastien

Goasguen “Autonomic Live Adaptation of Virtual Computational

Environments in a Multi-Domain Infrastructure”, Proceedings of The

3rd IEEE International Conference on Autonomic Computing (ICAC'06),

Dublin,Ireland, June 2006.

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

15

[17] Paul Ruth, Xuxian Jiang, Dongyan Xu, Sebastien Goasguen, “Towards

Virtual Distributed Environments in a Shared Infrastructure”, IEEE

Computer, Special Issue on Virtualization Technologies, May, 2005.

Author Information

Paul Ruth, Senior Distributed Systems Researcher, RENCI/UNC-Chapel Hill,

pruth@renci.org. (Formerly Assistant Professor of Computer Science,

University of Mississippi)

Dennis Brylow, Assistant Professor of Computer Science, Marquette

University, brylow@mscs.mu.edu.

Figure 1. Embedded Xinu Laboratory.

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Proceedings of FIE 2011: 41st Annual Conference on Frontiers in Education, Rapid City, SD, 12-15 Oct. 2011, (October 12-
15, 2011): pg. S2E-1 - S2E-6. DOI. This article is © Frontiers in Education Clearinghouse and permission has been granted
for this version to appear in e-Publications@Marquette. Frontiers in Education Clearinghouse does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Frontiers in
Education Clearinghouse.

16

Figure 2. Virtual Xinu Laboratory

Figure 3. Mutually Isolated Virtual Xinu

http://dx.doi.org/10.1109/FIE.2011.6143069
http://epublications.marquette.edu/

	Marquette University
	e-Publications@Marquette
	10-1-2011

	An Experimental Nexos Laboratory Using Virtual Xinu
	Paul Ruth
	Dennis Brylow

	tmp.1456848232.pdf.nlBds

