24 research outputs found

    Operating-system directed power reduction

    Full text link

    A simple deterministic algorithm for guaranteeing the forward progress of transactions

    Get PDF
    This paper describes a remarkably simple deterministic (not probabilistic) contention-management algorithm for guaranteeing the forward progress of transactions - avoiding deadlocks, livelocks, and other anomalies. The transactions must be finite (no infinite loops), but on each restart, a transaction may access different shared-memory locations. The algorithm supports irrevocable transactions as long as the transaction satisfies a simple ordering constraint. In particular, a transaction that accesses only one shared-memory location is never aborted. The algorithm is suitable for both hardware and software transactional-memory systems. It also can be used in some contexts as a locking protocol for implementing transactions "by hand."

    The Transactional Conflict Problem

    Full text link
    The transactional conflict problem arises in transactional systems whenever two or more concurrent transactions clash on a data item. While the standard solution to such conflicts is to immediately abort one of the transactions, some practical systems consider the alternative of delaying conflict resolution for a short interval, which may allow one of the transactions to commit. The challenge in the transactional conflict problem is to choose the optimal length of this delay interval so as to minimize the overall running time penalty for the conflicting transactions. In this paper, we propose a family of optimal online algorithms for the transactional conflict problem. Specifically, we consider variants of this problem which arise in different implementations of transactional systems, namely "requestor wins" and "requestor aborts" implementations: in the former, the recipient of a coherence request is aborted, whereas in the latter, it is the requestor which has to abort. Both strategies are implemented by real systems. We show that the requestor aborts case can be reduced to a classic instance of the ski rental problem, while the requestor wins case leads to a new version of this classical problem, for which we derive optimal deterministic and randomized algorithms. Moreover, we prove that, under a simplified adversarial model, our algorithms are constant-competitive with the offline optimum in terms of throughput. We validate our algorithmic results empirically through a hardware simulation of hardware transactional memory (HTM), showing that our algorithms can lead to non-trivial performance improvements for classic concurrent data structures

    Metrical Service Systems with Multiple Servers

    Full text link
    We study the problem of metrical service systems with multiple servers (MSSMS), which generalizes two well-known problems -- the kk-server problem, and metrical service systems. The MSSMS problem is to service requests, each of which is an ll-point subset of a metric space, using kk servers, with the objective of minimizing the total distance traveled by the servers. Feuerstein initiated a study of this problem by proving upper and lower bounds on the deterministic competitive ratio for uniform metric spaces. We improve Feuerstein's analysis of the upper bound and prove that his algorithm achieves a competitive ratio of k((k+ll)1)k({{k+l}\choose{l}}-1). In the randomized online setting, for uniform metric spaces, we give an algorithm which achieves a competitive ratio O(k3logl)\mathcal{O}(k^3\log l), beating the deterministic lower bound of (k+ll)1{{k+l}\choose{l}}-1. We prove that any randomized algorithm for MSSMS on uniform metric spaces must be Ω(logkl)\Omega(\log kl)-competitive. We then prove an improved lower bound of (k+2l1k)(k+l1k){{k+2l-1}\choose{k}}-{{k+l-1}\choose{k}} on the competitive ratio of any deterministic algorithm for (k,l)(k,l)-MSSMS, on general metric spaces. In the offline setting, we give a pseudo-approximation algorithm for (k,l)(k,l)-MSSMS on general metric spaces, which achieves an approximation ratio of ll using klkl servers. We also prove a matching hardness result, that a pseudo-approximation with less than klkl servers is unlikely, even for uniform metric spaces. For general metric spaces, we highlight the limitations of a few popular techniques, that have been used in algorithm design for the kk-server problem and metrical service systems.Comment: 18 pages; accepted for publication at COCOON 201

    Competitive Algorithms for Online Leasing Problem in Probabilistic Environments

    Full text link
    Abstract. We integrate probability distribution into pure competitive analysis to improve the performance measure of competitive analysis, since input sequences of the leasing problem have simple structure and favorably statistical property. Let input structures be the characteristic of geometric distribution, and we obtain optimal on-line algorithms and their competitive ratios. Moreover, the introducing of interest rate would diminish the uncertainty involved in the process of decision making and put off the optimal purchasing date.
    corecore