
A Simple Deterministic Algorithm for Guaranteeing
the Forward Progress of Transactions

Charles E. Leiserson
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge, MA 02139

ABSTRACT
This paper describes a remarkably simple deterministic (not prob-
abilistic) contention-management algorithm for guaranteeing the
forward progress of transactions — avoiding deadlocks, livelocks,
and other anomalies. The transactions must be finite (no infi-
nite loops), but on each restart, a transaction may access differ-
ent shared-memory locations. The algorithm supports irrevocable
transactions as long as the transaction satisfies a simple ordering
constraint. In particular, a transaction that accesses only one shared-
memory location is never aborted. The algorithm is suitable for
both hardware and software transactional-memory systems. It also
can be used in some contexts as a locking protocol for implement-
ing transactions “by hand.”

1. INTRODUCTION
Transactional memory [9, 10, 14, 19, 24, 25] has been proposed as
a general and flexible way to allow programs to read and modify
disparate shared-memory locations atomically. The basic idea of
transactional memory rests on transactions [5, 16], which offer a
method for providing mutual synchronization without the protocol
intricacies of conventional synchronization methods, such as lock-
ing or nonblocking synchronization. Many textbooks on concur-
rency (e.g., [11,23,26]) treat the basics of synchronization methods,
including transactional memory.

A transaction is a delimited sequence of instructions performed
as part of a program. If a transaction commits, then all its instruc-
tions appear to have run atomically with respect to other transac-
tions, that is, they do not appear to have interleaved with the in-
structions of other transactions. If a transaction aborts, then none
of its stores take effect, and the transaction may be restarted from its
first instruction as if it had never been run. From the programmer’s
perspective, all that needs to be specified is where a transaction be-
gins and where it ends, and the transactional support, whether in
hardware or software, handles all the complexities.

Under the covers of a transactional-memory system is a collec-
tion of mechanisms, implemented in hardware or software, which
perform basic bookkeeping for the transaction. For example, the

This research was support in part by NSF Grant 1314547.

system must have some means to detect when two concurrent trans-
actions conflict: both transactions access the same shared-memory
location, and one of them attempts to modify the location. Read-
/write sets of shared-memory addresses accessed by the transaction
must be maintained, so that the transaction can be rolled back if it is
aborted or committed when it completes. These particular mecha-
nisms are amply described in the literature (see, for example, [11]),
and are not the focus of this paper.

This paper focuses on another under-the-covers mechanism
dubbed the contention manager [12], which ensures that trans-
actions complete. A contention manager can be viewed as a dis-
tributed program with a module in each transaction. The mod-
ules coordinate to ensure forward progress, typically using mutual-
exclusion locks, nonblocking synchronization, and other hardware
support. When two transactions conflict, the contention manager
chooses whether one of the transactions should abort or whether
one transaction should wait for the other so that the two transac-
tions appear to execute in a serial order. The contention manager
ensures that the system does not deadlock, where transactions are
caught in a cycle of waiting and cannot progress. The contention
manager ensures that the system does not livelock, where transac-
tions are repeatedly aborted and restarted without making progress.
In short, the contention manager guarantees that transactions make
forward progress, ideally with as little overhead as possible.

The literature is replete with contention-management schemes,
many of which can be quite complex. (See [17, 22, 23, 26] for
overviews.) Some contention-management strategies employ prob-
abilistic backoff, where an aborting transaction progressively de-
lays its restart by increasing amounts to avoid livelock. Other con-
tention managers use timestamps to ensure that the “oldest” trans-
action makes progress when a conflict occurs [3, 6, 21]. Some con-
tention managers abort whichever of two conflicting transactions
has a smaller read/write set in order to minimize the wasted work.
Heuristic strategies abound, many of which — as a last resort to
guarantee forward progress if some problematic transaction aborts
frequently enough — grab a global lock and execute all transac-
tions serially, even transactions that are completely independent of
the problematic one.

This paper describes a simple contention-management algo-
rithm, called Algorithm L, which guarantees forward progress. Be-
fore a transaction accesses a shared-memory location, Algorithm L
checks whether the access is safe, that is, no other transaction con-
flicts, which makes the algorithm eager, pessimistic, or conser-
vative, in the varied parlance of the concurrency literature, as op-
posed to lazy or optimistic. (See [23] for a taxonomy of contention-
management strategies.) Although a transaction may abort, it al-
ways completes in a bounded number of retries. Algorithm L is
deterministic and contains no probabilistic elements, such as back-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/156872761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SAFE-ACCESS(x,L)
1 if h(x) ∈ L
2 // do nothing
3 else
4 M = {i ∈ L : i > h(x)}
5 L = L∪{h(x)}
6 if M = = /0
7 ACQUIRE(lock[h(x)]) // blocking
8 elseif TRY-ACQUIRE(lock[h(x)]) // nonblocking
9 // do nothing

10 else
11 roll back transaction state (without releasing locks)
12 for i ∈M
13 RELEASE(lock[i])
14 ACQUIRE(lock[h(x)]) // blocking
15 for all i ∈M in increasing order
16 ACQUIRE(lock[i]) // blocking
17 restart transaction // does not return
18 access location x

Figure 1: Algorithm L, which safely accesses a memory location x within
a transaction with local lock-index set L. Each element of the global owner-
ship array lock[0 . .n−1] contains an antistarvation (e.g., queuing) lock. The
owner function h : U → {0,1, . . . ,n− 1} maps the space U of all shared-
memory locations to indexes in the ownership array lock. At transaction
start, the transaction’s lock-index set L is initialized to the empty set: L = /0.
When the transaction completes, all locks with indexes in L are released.

off. The algorithm can be adapted for either hardware or software
implementation.

The remainder of this paper is organized as follows. Section 2
presents Algorithm L, and Section 3 briefly argues its correctness.
Section 4 provides a short discussion of ramifications, and Sec-
tion 5 concludes by surveying antecedents in the literature.

2. Algorithm L
This section describes Algorithm L. The algorithm employs a finite
ownership array [7] lock[0 . .n−1] of locks, which is a global array
accessible by all the transactions. Typically, a contention manager
of this nature needs reader/writer locks, not just mutual-exclusion
locks (mutexes), but since this issue can be readily handled at the
cost of some additional complexity, let us assume for simplicity that
the locks are mutexes. It is important for the guarantee of forward
progress, however, that the locks be antistarvation (e.g., queuing).
A simple spin-lock will not do. A good discussion of locking alter-
natives can be found in [18].

Before accessing a shared-memory location x, a transaction must
acquire the lock in the ownership array associated with x. An arbi-
trary many-to-one owner function h : U → {0,1, . . . ,n− 1} maps
the set U of all shared-memory locations to one of the n slots in the
ownership array. (All transactions must agree on the same owner
function h.) To acquire the lock associated with x, the transaction
may perform one of two operations:
• ACQUIRE(lock[h(x)]), which blocks on the lock acquisition un-

til the lock becomes free.
• TRY-ACQUIRE(lock[h(x)]), which either successfully acquires

the lock and returns the Boolean TRUE, or fails and returns
FALSE.

The finite ownership array introduces the possibility of a false
conflict, where two transactions accessing different locations con-

flict by requiring the same lock, when they would not have con-
flicted had the locks been on the locations themselves. The larger
the size n of the ownership array, the less the chance of a false con-
flict. On the other hand, larger values for n lead to weaker bounds
on the number of restarts a transaction might endure before it com-
pletes.

Pseudocode for Algorithm L is shown in Figure 1. Each trans-
action maintains its own local set L of lock indexes, which starts
out as the empty set /0. Whenever the transaction encounters a new
shared-memory location x, it greedily attempts to acquire lock[h(x)]
and add h(x) to L. Specifically, it performs one of the following two
actions:

A. If h(x) is smaller than the largest value in L, the transaction
aborts if the lock[h(x)] is held by another transaction.

B. If h(x) is larger than the largest value in L, the transaction
blocks if lock[h(x)] is taken. Once the transaction acquires
the lock, it performs the access of x.

If an abort occurs, the transaction rolls back its transactional state
and releases all locks with indexes larger than h(x). It then acquires
lock[h(x)] and reacquires in increasing order all the locks it previ-
ously held, blocking along the way if any of these locks is taken.
The algorithm then restarts the transaction, which once again at-
tempts to acquire any additional locks it needs greedily as it en-
counters them.

3. CORRECTNESS
This section shows that Algorithm L avoids deadlock and guaran-
tees forward progress.

LEMMA 1. Transactions do not deadlock.

PROOF. The locks in the ownership array are linearly or-
dered [1, 8], and a transaction blocks on acquiring a lock only if
it does not hold any higher-indexed locks. The proof, therefore, can
follow the standard proof that acquiring locks in order cannot pro-
duce a deadlock. For deadlock to occur, there must be a cycle of
transactions, each waiting for a lock that another holds. Suppose
for the purpose of contradiction that there is such a cycle, and con-
sider the transaction on the cycle that holds the largest indexed lock.
Since Algorithm L only blocks when acquiring locks that are larger
than any held lock (see lines 7, 14, and 16), this transaction cannot
be waiting. Contradiction.

THEOREM 2. Every transaction makes forward progress.

PROOF. Assume that transactions are finite, i.e., no infinite
loops. Consider the set L of lock indexes for a transaction at the var-
ious times immediately before the transaction restarts. The transac-
tion must eventually be able to acquire the lock with index h(x)
and the other locks with indexes in M, because transactions do not
deadlock (Lemma 1) and we have assumed that the locks are antis-
tarvation. Consequently, all locks with indexes in L are held by the
transaction immediately before the transaction restarts. With each
abort, at least one more lock index is added to L before the transac-
tion restarts, namely h(x). Since the ownership array contains only
a finite number n of locks, after at most n starts (n−1 restarts), the
transaction must complete.

Theorem 2 holds even if on each restart, the transaction can ac-
cess different shared-memory locations. If a transaction is accesses
the same shared-memory locations every time it restarts, a some-
what tighter bound can be obtained. Specifically, the transaction



must complete after executing at most min{n,m−1} times, where
m is the total number of distinct locks the transaction must acquire,
which is at most the number of distinct shared-memory locations it
accesses.

4. DISCUSSION
In practice, a contention-manager must cope with a multitude of
system concerns not immediately addressed by Algorithm L. Be-
cause of the algorithm’s simplicity, it should be possible to adapt it
to address many of these concerns. This section discusses the ram-
ifications of Algorithm L, many of which call for future research.

Algorithm L requires neither a global lock nor a backoff strategy
to ensure forward progress. A global lock may cause the system
to degrade poorly, because all transactions must serialize, even if
they are independent. In contrast, Algorithm L degrades gracefully
in that two transactions cannot delay one another if there is no path
between them in the conflict graph in which two transactions have
an edge between them if there exists a lock that they both need to
acquire. Because the algorithm is deterministic, requiring no ran-
domization as with backoff methods, it provides a solid guarantee
of forward progress.

How big should the ownership array be? Ideally, one would like
the chance of false conflicts to be small so that transactions that
have nothing to do with each other execute without interaction. The
larger the size n of the ownership array, the less the chance that two
transactions will conflict, if the owner function h is chosen as a ran-
dom hash function. Due to the birthday paradox [2, Sec. 5.4], if the
total number of shared-memory locations in all concurrently run-
ning transactions is m, the expected number of false conflicts is at
most 1 if n = m2/2, in which case the impact of the conflict should
be negligible. Empirical measurements of conflicts for finite own-
ership arrays have been studied in [28], but it would be desirable to
characterize the impact of ownership-array size theoretically.

Irrevocable transactions [27] are transactions whose side effects,
such as I/O and system calls, cannot be rolled back. Algorithm L
can support irrevocable transactions if the shared-memory loca-
tions are known at the start of the transaction. The transaction sorts
the lock indexes of the shared-memory locations and acquires the
corresponding locks in order before starting the transaction. This
and other advantages of using locks to support transactions are dis-
cussed in [4].

It may make sense to wait competitively [13] before aborting a
transaction. The idea is that the rollback and lock reacquisition may
take some time. Waiting a proportion of that time before giving up
on acquiring a lock does not affect overall performance by more
than a constant factor if the lock is not soon released. If the lock
is released soon, performance can improve dramatically, especially
since if the owner function h is a random hash function, the more
locks a transaction acquires, the more likely it is that it must per-
form an aborting acquire instead of a blocking acquire.

The extension to reader/writer locks is straightforward, and for
the most part, it follows the same logic as the mutex-based algo-
rithm. When a writer wishes to acquire a lock that it already holds
as a reader, however, it must attempt to reacquire the lock in writer
mode, aborting if there is a conflict with other readers. When the
lock is acquired in writer mode during restart, it is acquired with
blocking. The reader/writer lock implementation must ensure that
this writer cannot be starved by subsequent readers in order to guar-
antee forward progress. A nice overview of the different kinds of
locks and their properties can be found in [18].

If the compiler understands Algorithm L, it seems there are many
opportunities for optimization. For example, if the compiler can
analyze a block of transactional code and determine what shared-

memory locations it will access, it can sort the corresponding locks
in advance of executing the code. If the transaction happens to
abort, all the locks can be acquired in the reacquisition phase, rather
than just the lock that caused the abort. This optimization would
avoid the possibility of aborting over and over, each time on a dif-
ferent lock acquisition.

To support Algorithm L in hardware, the L1-caches can be used
to implement the ownership array. The owner function h can map
each address to the cache line in L1. The protocol can now pig-
gyback on the cache-coherence mechanism, much as in Herlihy
and Moss’s original proposal [10]. The more difficult issues in a
hardware implementation would seem to be ensuring the queuing
behavior for acquisition of reader/writer locks and dealing with is-
sues such as page faults, context switches, and the like. But these
are exactly the issues any transactional system works out with more
complicated contention managers, and it seems like a good research
project to see how they would play out with Algorithm L.

Algorithm L can be used as a locking methodology outside
of a transactional-memory context to implement transactions “by
hand.” For example, many parallel graph algorithms operate atomi-
cally on a vertex and all its neighbors by acquiring locks associated
with each vertex before performing the operation. By using a finite
ownership array for locks, rather than a lock in each vertex, Al-
gorithm L can ensure forward progress even if the graph structure
changes from one lock-acquisition attempt to the next. This strategy
should work particular well for graphs with bounded degree, since
the chance of aborting increases with the number of held locks.

As described in Section 2, the ordering of locks is static. It may
be possible for the transactions themselves to define the locking or-
der dynamically, such as in tree locking [26, Sec. 4.3.7]. This strat-
egy may lead to fewer aborts, since a transaction can often define a
needed lock to be larger in the linear order as long as no cycles are
created, allowing it to be acquired with blocking instead of abort.
A downside of this dynamic approach is that it seems to compro-
mise support for irrevocable transactions that access more than one
shared-memory location.

An advantage of Algorithm L is that a transactions aborts it-
self “synchronously” rather than being aborted “asynchronously”
by another transaction. Asynchronous aborts are generally harder
to manage, because the transaction must always be ready to be
aborted, regardless of whether its internal state is consistent. In con-
trast, synchronous aborts allow a transaction to perform the abort at
specific times in the code when its state is consistent. An advantage
of asynchronous aborts is that they may be needed them anyway to
protect against transactions with infinite loops or large finite delays.

Certainly, there is plenty of room for more research as this simple
theoretical algorithm finds its way into practice.

5. RELATED WORK
Algorithm L has roots in prior work. The idea of releasing and reac-
quiring locks (sometimes termed “resources”) has surfaced sporad-
ically in the literature since the early studies of concurrency. The
idea of an ownership array is not new. In a sense, the contribution of
this paper is simply to recognize that these two ideas can be com-
bined to ensure forward progress. This section outlines this prior
work. It also briefly compares Algorithm L with timestamp-based
algorithms, a popular way of guaranteeing forward progress.

Havender mentioned a release-reacquire strategy in his seminal
1968 paper [8] as “Approach 3.” He does not explicitly mention
the idea of reacquiring the locks in a linear order on conflict, even
though that is “Approach 1,” settling instead for “Approach 2”: ob-
taining the locks collectively, which he explains can be done by
acquiring a global lock to ensure that collective lock acquisition is



atomic.
Lampson produced notes [15] for his MIT class 6.826 on operat-

ing systems in 1995 on operating systems which includes in-order
reacquisition after releasing them due to a conflict. The notes say,
“The generic solution is to collect the information you need, one
mutex at a time. Then reacquire the locks in a standard order, check
that things haven’t changed (or that your conclusions still hold), and
do the updates. If it doesn’t work out, retry. Version number make
the ‘didn’t change’ check cheap.”

In 2006, Riegel, Felber, and Fetzer [20] make the most explicit
reference to a release-and-reacquire-in-order strategy in the context
of a more elaborate contention-manager: “When a transaction fails
to commit at the end of the optimistic phase, the read/write sets are
first sorted deterministically using a total order relation (e.g., the
address of the objects in memory). Then, before restarting its exe-
cution, the contention manager iterates over all objects in the sorted
set and “opens” each object in write (read) mode if it belongs to the
write (read) set.” The release-and-reacquire-in-order idea is not by
itself, however, sufficient to guarantee forward progress. Indeed,
Riegel, Felber, and Fetzer later say, “A transaction can thus abort
more than once, but it will succeed as soon as the read/write sets
stabilize, i.e., do not change between two consecutive executions.
Given that we compute the read/write sets as the union of the ob-
jects accessed during previous executions, we should quickly ob-
tain a superset of the objects actually accessed by the current ex-
ecution and hence commit.” If there were an infinite number of
locations, however, a finite transaction might yet never complete,
because each time it is restarted, it might take a completely differ-
ent code path and acquire a completely different finite set of locks.
That is, the read/write sets might not stabilize. To guarantee for-
ward progress, a finite ownership array ensures that every finite
transaction completes, because eventually the transaction acquires
all the locks, and nothing can block its progress.

The idea of an owner function h and a finite ownership array is
mentioned in the literature in 2003 by Harris and Fraser [7]. They
do not relate the finiteness of the ownership array to the problem
of guaranteeing forward progress, however. Database systems also
map object identifiers into a shared data structure of bounded size,
usually a hash table of so-called lock control blocks [26, Sec. 10.2].

Timestamp-based algorithms [3,6,21] are a popular way to guar-
antee forward progress, but these contention-management algo-
rithms tend toward the complex. For example, they require syn-
chronization to ensure that timestamps are distinct and properly
ordered. “Wound-wait” algorithms [21] require that a mechanism
be provided for one transaction to abort another asynchronously. In
this sense, Algorithm L is more like a “wait-die” algorithm [21] in
which a transaction only ever needs to abort itself synchronously.
Moreover, supporting irrevocable transactions is more complex
with timestamp-based algorithms, especially to support multiple ir-
revocable transactions. Algorithm L supports multiple irrevocable
transactions simply by ordering the accesses.

Timestamp-based algorithms may be the preferred way to im-
plement transactions while guaranteeing forward progress, be-
cause modern techniques, especially TL2 [3], reduce the chance of
restarting considerably. Indeed, Guerraoui, Herlihy, and Pochon [6]
have devised a wound-wait scheme with strong bounds on comple-
tion. A concern for Algorithm L is that with each lock a transaction
acquires, the chances increase that a restart is necessary, assuming
that the locks are randomly ordered. From this point of view, Al-
gorithm L may be most suitable for implementing transactions “by
hand” as a locking protocol in situations where each transaction
(critical region) only accesses a handful of objects.

6. ACKNOWLEDGMENTS
Many thanks to the participants of Dagstuhl Seminar 15021 Con-
current Computing in the Many-Core Era, which was held Jan-
uary 4–9, 2015, which is where and when I conceived the algo-
rithm. In particular, thanks to Hans Boehm (Google), Sebastian
Burckhardt (Microsoft), Dave Dice (Oracle), Stephan Diestelhorst
(ARM), Pascal Felber (University of Neuchatel), Maurice Her-
lihy (Brown University), Alexander Matveev (MIT), Eliot Moss
(University of Massachusetts), Torvald Riegel (Red Hat), Sven-
Bodo Scholz (Heriot-Watt University), Michael Scott (University
of Rochester), Nir Shavit (MIT), Michael Swift (University of Wis-
consin), and Martin T. Vechev (ETH Zurich) for their extensive
feedback during the Seminar as I bent their ears attempting to ar-
ticulate the algorithm. José Nelson Amaral (University of Alberta),
David F. Bacon (Google), Daniele Bonetta (Oracle Labs), Antony
Hosking (Purdue University), Milind Kulkarni (Purdue University),
Viktor Leis (Technical University of Munich), Yossi Lev (Oracle),
Maged M. Michael (IBM), Paolo Romano (University of Lisbon),
and Sven-Bodo Scholz (Heriot-Watt University) also provided con-
structive comments during the Seminar.

Thanks to Matteo Frigo (Amazon Web Services), Bradley Kusz-
maul (MIT), and Alex Matveev (MIT) for their ideas to simplify
the exposition of the algorithm. Thanks to Phil Bernstein (Mi-
crosoft), Butler Lampson (Microsoft/MIT), Sam Madden (MIT),
Michael Scott (University of Rochester), Gottfried Vossen (Uni-
versity of Muenster), and Gerhard Weikum (Max Planck Institute
for Informatics, Saarbrueken) for confirming, to the best of their
knowledge, the novelty of the algorithm. Thanks to Pascal Felber
(University of Neuchatel), Butler Lampson (Microsoft/MIT), and
Michael Swift (University of Wisconsin) for helping to identify
relevant prior work. Thanks to Will Hasenplaugh (MIT), Bradley
Kuszmaul (MIT), and Yuan Tang (Fudan University) for helpful
comments.

7. REFERENCES
[1] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks.

Computing Surveys, 3(2):67–78, 1971.
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. Introduction to Algorithms. The MIT Press, third
edition, 2009.

[3] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In
Shlomi Dolev, editor, Distributed Computing, volume 4167 of
Lecture Notes in Computer Science, pages 194–208. Springer Berlin
Heidelberg, 2006.

[4] Dave Dice and Nir Shavit. TLRW: Return of the read-write lock. In
SPAA, pages 284–293. ACM, 2010.

[5] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[6] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a
theory of transactional contention managers. In PODC, pages
258–264. ACM, 2005.

[7] Tim Harris and Keir Fraser. Language support for lightweight
transactions. In OOPSLA, pages 388–402, Anaheim, California,
October 2003.

[8] J.W. Havender. Avoiding deadlock in multitasking systems. IBM
Systems Journal, 7(2):74–84, 1968.

[9] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, III. Software transactional memory for dynamic-sized data
structures. In PODC ’03, pages 92–101, Boston, Massachusetts, July
2003.

[10] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
Architectural support for lock-free data structures. In ISCA 20, pages
289–300, San Diego, California, May 1993.

[11] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[12] Maurice P. Herlihy, Victor Luchangco, and Mark Moir.



Obstruction-free synchronization: Double-ended queues as an
example. In ICDCS, pages 522–529, Providence, Rhode Island, May
2003.

[13] A.R. Karlin, M.S. Manasse, L.A. McGeoch, and S. Owicki.
Competitive randomized algorithms for nonuniform problems.
Algorithmica, 11(6):542–571, 1994.

[14] Tom Knight. An architecture for mostly functional languages. In
LFP, pages 105–112. ACM Press, 1986.

[15] Butler Lampson. Practical concurrency. Handout 21a for 6.826
Principles of Computer Systems, MIT, 1995.

[16] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete.
Atomic Transactions. Morgan Kaufmann, San Mateo, CA, 1994.

[17] Virendra J. Marathe and Michael L. Scott. A qualitative survey of
modern software transactional memory systems. Technical Report
TR 839, Department of Computer Science, University of Rochester,
2004.

[18] Paul E. McKenney. Selecting locking primitives for parallel
programming. CACM, 39(10):75–82, 1996.

[19] Ravi Rajwar and James R. Goodman. Transactional lock-free
execution of lock-based programs. In ASPLOS-X, pages 5–17, San
Jose, California, October 5–9 2002.

[20] Torvald Riegel, Pascal Felber, and Christof Fetzer. Stateful
contention management for software transactional memory: Learning
from failure. Technical Report RR-I-06-05.2, Université de

Neuchâtel Institut d’Informatique, 2006.
[21] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II.

System level concurrency control for distributed database systems.
ACM Trans. Database Syst., 3(2):178–198, 1978.

[22] William N. Scherer, III and Michael L. Scott. Advanced contention
management for dynamic software transactional memory. In PODC,
pages 240–248. ACM, 2005.

[23] Michael L. Scott. Shared-Memory Synchronization. Morgan &
Claypool, 2013.

[24] Nir Shavit and Dan Touitou. Software transactional memory. In
PODC ’95, pages 204–213, Ottawa, Ontario, Canada, August 1995.

[25] Janice M. Stone, Harold S. Stone, Philip Heidelberg, and John Turek.
Multiple reservations and the Oklahoma update. IEEE Parallel and
Distributed Technology, 1(4):58–71, November 1993.

[26] Gerhard Weikum and Gottfried Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann, 2002.

[27] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable
transactions and their applications. In SPAA, pages 285–296. ACM,
2008.

[28] Craig Zilles and Ravi Rajwar. Brief announcement: Transactional
memory and the birthday paradox. In SPAA, pages 303–304. ACM,

2007.


