250 research outputs found

    Computing large market equilibria using abstractions

    Full text link
    Computing market equilibria is an important practical problem for market design (e.g. fair division, item allocation). However, computing equilibria requires large amounts of information (e.g. all valuations for all buyers for all items) and compute power. We consider ameliorating these issues by applying a method used for solving complex games: constructing a coarsened abstraction of a given market, solving for the equilibrium in the abstraction, and lifting the prices and allocations back to the original market. We show how to bound important quantities such as regret, envy, Nash social welfare, Pareto optimality, and maximin share when the abstracted prices and allocations are used in place of the real equilibrium. We then study two abstraction methods of interest for practitioners: 1) filling in unknown valuations using techniques from matrix completion, 2) reducing the problem size by aggregating groups of buyers/items into smaller numbers of representative buyers/items and solving for equilibrium in this coarsened market. We find that in real data allocations/prices that are relatively close to equilibria can be computed from even very coarse abstractions

    On the Proximity of Markets with Integral Equilibria

    Full text link
    We study Fisher markets that admit equilibria wherein each good is integrally assigned to some agent. While strong existence and computational guarantees are known for equilibria of Fisher markets with additive valuations, such equilibria, in general, assign goods fractionally to agents. Hence, Fisher markets are not directly applicable in the context of indivisible goods. In this work we show that one can always bypass this hurdle and, up to a bounded change in agents' budgets, obtain markets that admit an integral equilibrium. We refer to such markets as pure markets and show that, for any given Fisher market (with additive valuations), one can efficiently compute a "near-by," pure market with an accompanying integral equilibrium. Our work on pure markets leads to novel algorithmic results for fair division of indivisible goods. Prior work in discrete fair division has shown that, under additive valuations, there always exist allocations that simultaneously achieve the seemingly incompatible properties of fairness and efficiency; here fairness refers to envy-freeness up to one good (EF1) and efficiency corresponds to Pareto efficiency. However, polynomial-time algorithms are not known for finding such allocations. Considering relaxations of proportionality and EF1, respectively, as our notions of fairness, we show that fair and Pareto efficient allocations can be computed in strongly polynomial time.Comment: 17 page

    Algorithms for Competitive Division of Chores

    Full text link
    We study the problem of allocating divisible bads (chores) among multiple agents with additive utilities, when money transfers are not allowed. The competitive rule is known to be the best mechanism for goods with additive utilities and was recently extended to chores by Bogomolnaia et al (2017). For both goods and chores, the rule produces Pareto optimal and envy-free allocations. In the case of goods, the outcome of the competitive rule can be easily computed. Competitive allocations solve the Eisenberg-Gale convex program; hence the outcome is unique and can be approximately found by standard gradient methods. An exact algorithm that runs in polynomial time in the number of agents and goods was given by Orlin. In the case of chores, the competitive rule does not solve any convex optimization problem; instead, competitive allocations correspond to local minima, local maxima, and saddle points of the Nash Social Welfare on the Pareto frontier of the set of feasible utilities. The rule becomes multivalued and none of the standard methods can be applied to compute its outcome. In this paper, we show that all the outcomes of the competitive rule for chores can be computed in strongly polynomial time if either the number of agents or the number of chores is fixed. The approach is based on a combination of three ideas: all consumption graphs of Pareto optimal allocations can be listed in polynomial time; for a given consumption graph, a candidate for a competitive allocation can be constructed via explicit formula; and a given allocation can be checked for being competitive using a maximum flow computation as in Devanur et al (2002). Our algorithm immediately gives an approximately-fair allocation of indivisible chores by the rounding technique of Barman and Krishnamurthy (2018).Comment: 38 pages, 4 figure

    The Equilibrium Existence Duality: Equilibrium with Indivisibilities & Income Effects

    Full text link
    We show that, with indivisible goods, the existence of competitive equilibrium fundamentally depends on agents' substitution effects, not their income effects. Our Equilibrium Existence Duality allows us to transport results on the existence of competitive equilibrium from settings with transferable utility to settings with income effects. One consequence is that net substitutability---which is a strictly weaker condition than gross substitutability---is sufficient for the existence of competitive equilibrium. We also extend the ``demand types'' classification of valuations to settings with income effects and give necessary and sufficient conditions for a pattern of substitution effects to guarantee the existence of competitive equilibrium.Comment: 46 pages, 1 figur

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market

    Dividing bads under additive utilities

    Get PDF
    We compare the Egalitarian rule (aka Egalitarian Equivalent) and the Competitive rule (aka Comeptitive Equilibrium with Equal Incomes) to divide bads (chores). They are both welfarist: the competitive disutility profile(s) are the critical points of their Nash product on the set of efficient feasible profiles. The C rule is Envy Free, Maskin Monotonic, and has better incentives properties than the E rule. But, unlike the E rule, it can be wildly multivalued, admits no selection continuous in the utility and endowment parameters, and is harder to compute. Thus in the division of bads, unlike that of goods, no rule normatively dominates the other
    • …
    corecore