5 research outputs found

    The Frequent Items Problem in Online Streaming under Various Performance Measures

    Full text link
    In this paper, we strengthen the competitive analysis results obtained for a fundamental online streaming problem, the Frequent Items Problem. Additionally, we contribute with a more detailed analysis of this problem, using alternative performance measures, supplementing the insight gained from competitive analysis. The results also contribute to the general study of performance measures for online algorithms. It has long been known that competitive analysis suffers from drawbacks in certain situations, and many alternative measures have been proposed. However, more systematic comparative studies of performance measures have been initiated recently, and we continue this work, using competitive analysis, relative interval analysis, and relative worst order analysis on the Frequent Items Problem.Comment: IMADA-preprint-c

    Competitive analysis of aggregate max in windowed streaming

    No full text
    We consider the problem of maintaining a fixed number k of items observed over a data stream, so as to optimize the maximum value over a fixed number n of recent observations. Unlike previous approaches, we use the competitive analysis framework and compare the performance of the online streaming algorithm against an optimal adversary that knows the entire sequence in advance. We consider the problem of maximizing the aggregate max, i.e., the sum of the values of the largest items in the algorithm's memory over the entire sequence. For this problem, we prove an asymptotically tight competitive ratio, achieved by a simple heuristic, called partition-greedy, that performs stream updates efficiently and has almost optimal performance. In contrast, we prove that the problem of maximizing, for every time t, the value maintained by the online algorithm in memory, is considerably harder: in particular, we show a tight competitive ratio that depends on the maximum value of the stream. We further prove negative results for the closely related problem of maintaining the aggregate minimum and for the generalized version of the aggregate max problem in which every item comes with an individual window. © 2009 Springer Berlin Heidelberg

    Competitive analysis of aggregate max in windowed streaming ⋆

    No full text
    Abstract. We consider the problem of maintaining a fixed number k of items observed over a data stream, so as to optimize the maximum value over a fixed number n of recent observations. Unlike previous approaches, we use the competitive analysis framework and compare the performance of the online streaming algorithm against an optimal adversary that knows the entire sequence in advance. We consider the problem of maximizing the aggregate max, i.e., the sum of the values of the largest items in the algorithm’s memory over the entire sequence. For this problem, we prove an asymptotically tight competitive ratio, achieved by a simple heuristic, called partition-greedy, that performs stream updates efficiently and has almost optimal performance. In contrast, we prove that the problem of maximizing, for every time t, the value maintained by the online algorithm in memory, is considerably harder: in particular, we show a tight competitive ratio that depends on the maximum value of the stream. We further prove negative results for the closely related problem of maintaining the aggregate minimum and for the generalized version of the aggregate max problem in which every item comes with an individual window.
    corecore