15,797 research outputs found

    Associations of region-specific foot pain and foot biomechanics: the framingham foot study

    Get PDF
    BACKGROUND. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. METHODS. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. RESULTS. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. CONCLUSIONS. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain

    Alterations in thoracolumbosacral movement when pain causing lameness has been improved by diagnostic analgesia

    Get PDF
    Lameness, thoracolumbosacral pain and reduced range of motion (ROM) often coexist; better understanding of their relationship is needed. The objectives were to determine if thoracolumbosacral movement of horses changes when pain causing lameness is improved by diagnostic analgesia. We hypothesised that reduction of lameness will increase ROM of the thoracolumbosacral region. Thirteen horses with different types of hind limb lameness were trotted in straight lines and lunged on a 10 m diameter circle on left and right reins before and after lameness was subjectively substantially improved by diagnostic analgesia. Inertial sensor data were collected from the withers, thirteenth (T13) and eighteenth thoracic (T18) vertebrae, third lumbar (13) vertebra, tubera sacrale (TS), left and right tubera coxae. ROM of flexion-extension, axial rotation, lateral bending, dorsoventral, lateral-lateral motion and vertical movement symmetry were quantified at each thoracolumbar site. Hiphike difference (HHD), maximum difference (MaxDiff) and minimum difference (MinDiff) for the pelvic sensors were measured. Percentage changes for before and after diagnostic analgesia were calculated; mean standard deviation (SD) or median [interquartile range] were determined. Associations between the change in pelvic versus thoracolumbar movement symmetry after each local analgesic technique were tested. After resolution of lameness, HHD decreased by 7% [68%] (P = 0.006). The MinDiff decreased significantly by 33%[61%] (P = 0.01), 45 +/- 13% (P = 0.005) and 52 +/- 23% (P = 0.04), for TS, L3 and T18, respectively. There was significantly increased ROM in flexion-extension at T13, in axial rotation at T13, T18, 13 and in lateral-lateral ROM at 13. Thoracolumbosacral asymmetry and reduced ROM associated with lameness were both altered immediately by improvement in lameness using diagnostic analgesia. (C) 2017 Elsevier Ltd. All rights reserved

    Vertical movement symmetry of the withers in horses with induced forelimb and hindlimb lameness at trot

    Get PDF
    Background The main criteria for lameness assessment in horses are head movement for forelimb lameness and pelvic movement for hindlimb lameness. However, compensatory head nod in horses with primary hindlimb lameness is a well‐known phenomenon. This compensatory head nod movement can be easily misinterpreted as a sign of primary ipsilateral forelimb lameness. Therefore, discriminating compensatory asymmetries from primary directly pain‐related movement asymmetries is a prerequisite for successful lameness assessment. Objectives To investigate the association between head, withers and pelvis movement asymmetry in horses with induced forelimb and hindlimb lameness. Study design Experimental study. Methods In 10 clinically sound Warmblood riding horses forelimb and hindlimb lameness were induced using a sole pressure model. The horses were then trotted on a treadmill. 3D optical motion capture was used to collect kinematic data from reflective markers attached to the poll, withers and tubera sacrale. The magnitude and side (left or right) of the following symmetry parameters, vertical difference in minimum position, maximum position and range‐up, were calculated for head, withers and pelvis. Mixed models were used to analyse data from induced forelimb and hindlimb lameness. Results For each mm increase in pelvic asymmetry in response to hindlimb lameness induction, withers movement asymmetry increased by 0.35‐0.55 mm; but towards the contralateral side. In induced forelimb lameness, for each mm increase in head movement asymmetry, withers movement asymmetry increased by 0.05‐0.10 mm, in agreement with the head movement asymmetry direction, both indicating lameness in the induced forelimb. Main limitations Results must be confirmed in clinically lame horses trotting overground. Conclusions The vertical asymmetry pattern of the withers discriminated a head nod associated with true forelimb lameness from the compensatory head movement asymmetry caused by primary hindlimb lameness. Measuring movement symmetry of the withers may thus aid in determining primary lameness location

    Robots that can adapt like animals

    Get PDF
    As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot "think outside the box" to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robot's intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    Dual tasking in Parkinson's disease: cognitive consequences while walking

    Full text link
    Published in final edited form as: Neuropsychology. 2017 September; 31(6): 613–623. doi:10.1037/neu0000331.OBJECTIVE: Cognitive deficits are common in Parkinson's disease (PD) and exacerbate the functional limitations imposed by PD's hallmark motor symptoms, including impairments in walking. Though much research has addressed the effect of dual cognitive-locomotor tasks on walking, less is known about their effect on cognition. The purpose of this study was to investigate the relation between gait and executive function, with the hypothesis that dual tasking would exacerbate cognitive vulnerabilities in PD as well as being associated with gait disturbances. METHOD: Nineteen individuals with mild-moderate PD without dementia and 13 age- and education-matched normal control adults (NC) participated. Executive function (set-shifting) and walking were assessed singly and during dual tasking. RESULTS: Dual tasking had a significant effect on cognition (reduced set-shifting) and on walking (speed, stride length) for both PD and NC, and also on stride frequency for PD only. The impact of dual tasking on walking speed and stride frequency was significantly greater for PD than NC. Though the group by condition interaction was not significant, PD had fewer set-shifts than NC on dual task. Further, relative to NC, PD showed significantly greater variability in cognitive performance under dual tasking, whereas variability in motor performance remained unaffected by dual tasking. CONCLUSIONS: Dual tasking had a significantly greater effect in PD than in NC on cognition as well as on walking. The results suggest that assessment and treatment of PD should consider the cognitive as well as the gait components of PD-related deficits under dual-task conditions. (PsycINFO Database Record)
    corecore