17,998 research outputs found

    Post-Comparison Mitigation of Demographic Bias in Face Recognition Using Fair Score Normalization

    Full text link
    Current face recognition systems achieve high progress on several benchmark tests. Despite this progress, recent works showed that these systems are strongly biased against demographic sub-groups. Consequently, an easily integrable solution is needed to reduce the discriminatory effect of these biased systems. Previous work mainly focused on learning less biased face representations, which comes at the cost of a strongly degraded overall recognition performance. In this work, we propose a novel unsupervised fair score normalization approach that is specifically designed to reduce the effect of bias in face recognition and subsequently lead to a significant overall performance boost. Our hypothesis is built on the notation of individual fairness by designing a normalization approach that leads to treating similar individuals similarly. Experiments were conducted on three publicly available datasets captured under controlled and in-the-wild circumstances. Results demonstrate that our solution reduces demographic biases, e.g. by up to 82.7% in the case when gender is considered. Moreover, it mitigates the bias more consistently than existing works. In contrast to previous works, our fair normalization approach enhances the overall performance by up to 53.2% at false match rate of 0.001 and up to 82.9% at a false match rate of 0.00001. Additionally, it is easily integrable into existing recognition systems and not limited to face biometrics.Comment: Accepted in Pattern Recognition Letter

    Generalizability and Application of the Skin Reflectance Estimate Based on Dichromatic Separation (SREDS)

    Full text link
    Face recognition (FR) systems have become widely used and readily available in recent history. However, differential performance between certain demographics has been identified within popular FR models. Skin tone differences between demographics can be one of the factors contributing to the differential performance observed in face recognition models. Skin tone metrics provide an alternative to self-reported race labels when such labels are lacking or completely not available e.g. large-scale face recognition datasets. In this work, we provide a further analysis of the generalizability of the Skin Reflectance Estimate based on Dichromatic Separation (SREDS) against other skin tone metrics and provide a use case for substituting race labels for SREDS scores in a privacy-preserving learning solution. Our findings suggest that SREDS consistently creates a skin tone metric with lower variability within each subject and SREDS values can be utilized as an alternative to the self-reported race labels at minimal drop in performance. Finally, we provide a publicly available and open-source implementation of SREDS to help the research community. Available at https://github.com/JosephDrahos/SRED

    Measuring Bias in AI Models with Application to Face Biometrics: An Statistical Approach

    Full text link
    The new regulatory framework proposal on Artificial Intelligence (AI) published by the European Commission establishes a new risk-based legal approach. The proposal highlights the need to develop adequate risk assessments for the different uses of AI. This risk assessment should address, among others, the detection and mitigation of bias in AI. In this work we analyze statistical approaches to measure biases in automatic decision-making systems. We focus our experiments in face recognition technologies. We propose a novel way to measure the biases in machine learning models using a statistical approach based on the N-Sigma method. N-Sigma is a popular statistical approach used to validate hypotheses in general science such as physics and social areas and its application to machine learning is yet unexplored. In this work we study how to apply this methodology to develop new risk assessment frameworks based on bias analysis and we discuss the main advantages and drawbacks with respect to other popular statistical tests.Comment: 8 page

    Fair GANs through model rebalancing with synthetic data

    Full text link
    Deep generative models require large amounts of training data. This often poses a problem as the collection of datasets can be expensive and difficult, in particular datasets that are representative of the appropriate underlying distribution (e.g. demographic). This introduces biases in datasets which are further propagated in the models. We present an approach to mitigate biases in an existing generative adversarial network by rebalancing the model distribution. We do so by generating balanced data from an existing unbalanced deep generative model using latent space exploration and using this data to train a balanced generative model. Further, we propose a bias mitigation loss function that shows improvements in the fairness metric even when trained with unbalanced datasets. We show results for the Stylegan2 models while training on the FFHQ dataset for racial fairness and see that the proposed approach improves on the fairness metric by almost 5 times, whilst maintaining image quality. We further validate our approach by applying it to an imbalanced Cifar-10 dataset. Lastly, we argue that the traditionally used image quality metrics such as Frechet inception distance (FID) are unsuitable for bias mitigation problems

    Survey of Social Bias in Vision-Language Models

    Full text link
    In recent years, the rapid advancement of machine learning (ML) models, particularly transformer-based pre-trained models, has revolutionized Natural Language Processing (NLP) and Computer Vision (CV) fields. However, researchers have discovered that these models can inadvertently capture and reinforce social biases present in their training datasets, leading to potential social harms, such as uneven resource allocation and unfair representation of specific social groups. Addressing these biases and ensuring fairness in artificial intelligence (AI) systems has become a critical concern in the ML community. The recent introduction of pre-trained vision-and-language (VL) models in the emerging multimodal field demands attention to the potential social biases present in these models as well. Although VL models are susceptible to social bias, there is a limited understanding compared to the extensive discussions on bias in NLP and CV. This survey aims to provide researchers with a high-level insight into the similarities and differences of social bias studies in pre-trained models across NLP, CV, and VL. By examining these perspectives, the survey aims to offer valuable guidelines on how to approach and mitigate social bias in both unimodal and multimodal settings. The findings and recommendations presented here can benefit the ML community, fostering the development of fairer and non-biased AI models in various applications and research endeavors
    • …
    corecore