7,427 research outputs found

    Synthesizing SystemC Code from Delay Hybrid CSP

    Full text link
    Delay is omnipresent in modern control systems, which can prompt oscillations and may cause deterioration of control performance, invalidate both stability and safety properties. This implies that safety or stability certificates obtained on idealized, delay-free models of systems prone to delayed coupling may be erratic, and further the incorrectness of the executable code generated from these models. However, automated methods for system verification and code generation that ought to address models of system dynamics reflecting delays have not been paid enough attention yet in the computer science community. In our previous work, on one hand, we investigated the verification of delay dynamical and hybrid systems; on the other hand, we also addressed how to synthesize SystemC code from a verified hybrid system modelled by Hybrid CSP (HCSP) without delay. In this paper, we give a first attempt to synthesize SystemC code from a verified delay hybrid system modelled by Delay HCSP (dHCSP), which is an extension of HCSP by replacing ordinary differential equations (ODEs) with delay differential equations (DDEs). We implement a tool to support the automatic translation from dHCSP to SystemC

    Predictive input delay compensation for motion control systems

    Get PDF
    This paper presents an analytical approach for the prediction of future motion to be used in input delay compensation of time-delayed motion control systems. The method makes use of the current and previous input values given to a nominally behaving system in order to realize the prediction of the future motion of that system. The generation of the future input is made through an integration which is realized in discrete time setting. Once the future input signal is created, it is used as the reference input of the remote system to enforce an input time delayed system, conduct a delay-free motion. Following the theoretical formulation, the proposed method is tested in experiments and the validity of the approach is verified

    Linearization-based state-transition model for the discrete extended Kalman filter applied to multibody simulations

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.This study investigates the discrete extended Kalman filter as applied to multibody systems and focuses on accurate formulation of the state-transition model in the framework. The proposed state-transition model is based on the coordinate-partitioning method and linearization of the multibody equations of motion. The approach utilizes the synergies between the integration of states and estimator covariances without overly simplifying the integrator structure. The proposed method is analyzed with a forward dynamics analysis of a four-bar mechanism. The results show that the stability of the state-transition model in the forward dynamics analysis is significantly enhanced with the proposed method compared with the forward Euler-based methods. The computational efficiency of the novel method was significantly lower in comparison to forward Euler-based methods, which was found to be mainly due to the computation of the Jacobian matrix of the nonlinear state equation. However, the increase in computational cost can be considered acceptable in Kalman-filtering applications, where the exact Jacobian of the state equation is needed

    Addressing Computational Complexity of Electromagnetic Systems Using Parameterized Model Order Reduction

    Get PDF
    As operating frequencies increase, full wave numerical techniques such as the finite element method (FEM) become necessary for the analysis of high-frequency and microwave circuit structures. However, the FEM formulation of microwave circuits often results in very large systems of equations which are computationally expensive to solve. The objective of this thesis is to develop new parameterized model order eduction (MOR) techniques to minimize the computational complexity of microwave circuits. MOR techniques provide a mechanism to generate reduced order models from the detailed description of the original FEM formulation. The following contributions are made in this thesis: 1. The first project deals with developing a parameterized model order reduction to solve eigenvalue equations of electromagnetic structures that are discretized by using FEM. The proposed algorithm uses a multidimensional subspace method based on modified perturbation theory and singular-value decomposition to perform reduction directly on the finite element eigenvalue equations. This procedure generates parametric reduced order models that are valid over the desired parameter range without the need to redo the reduction when design parameters are changed. This provides significant computational savings when compared to previous eigenvalue MOR techniques, since a new reduced order model is not required each time a design parameter is changed. 2. Implicit moment match techniques such as the Arnoldi algorithm are often used to improve the accuracy of the reduced order model. However, the traditional Arnoldi algorithm is only applicable to first order linear systems and can not directly include arbitrary functions of frequency due to material and boundary conditions. In this work, an efficient algorithm to create parametric reduced order models of distributed electromagnetic systems that have arbitrary functions of frequency (due to material properties, boundary conditions, and delay elements) and design parameters. The proposed method is based on a multi-order Arnoldi algorithm used to implicitly calculate the moments with respect to frequency and design parameters, as well as the cross-moments. This procedure generates parametric reduced order models that are valid over the desired parameter range without the need to redo the reduction when design parameters are changed and provides more accurate reduced order systems when compared with traditional approaches such as Modified Gram Schmidt. 3. This project develops an efficient technique to calculate sensitivities of microwave structures with respect to network design parameters. The proposed algorithm uses a parametric reduced order model to solve the original network and an adjoint variable method to calculate sensitivities. Important features of the proposed method are 1) that the solution of the original network as well as sensitivities with respect to any parameter is obtained from the solution of the reduced order model, and 2) a new reduced order model is not required each time design parameters are varied

    Verified integration of differential equations with discrete delay

    Get PDF
    Many dynamic system models in population dynamics, physics and control involve temporally delayed state information in such a way that the evolution of future state trajectories depends not only on the current state as the initial condition but also on some previous state. In technical systems, such phenomena result, for example, from mass transport of incompressible fluids through finitely long pipelines, the transport of combustible material such as coal in power plants via conveyor belts, or information processing delays. Under the assumption of continuous dynamics, the corresponding delays can be treated either as constant and fixed, as uncertain but bounded and fixed, or even as state-dependent. In this paper, we restrict the discussion to the first two classes and provide suggestions on how interval-based verified approaches to solving ordinary differential equations can be extended to encompass such delay differential equations. Three close-to-life examples illustrate the theory

    Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure : influence of noise

    Full text link
    This paper presents an analysis of the effects of noise and precision on a simplified model of the clarinet driven by a variable control parameter. When the control parameter is varied the clarinet model undergoes a dynamic bifurcation. A consequence of this is the phenomenon of bifurcation delay: the bifurcation point is shifted from the static oscillation threshold to an higher value called dynamic oscillation threshold. In a previous work [8], the dynamic oscillation threshold is obtained analytically. In the present article, the sensitivity of the dynamic threshold on precision is analyzed as a stochastic variable introduced in the model. A new theoretical expression is given for the dynamic thresholds in presence of the stochastic variable, providing a fair prediction of the thresholds found in finite-precision simulations. These dynamic thresholds are found to depend on the increase rate and are independent on the initial value of the parameter, both in simulations and in theory.Comment: 14 page
    • …
    corecore