17,667 research outputs found

    Decoding billions of integers per second through vectorization

    Get PDF
    In many important applications -- such as search engines and relational database systems -- data is stored in the form of arrays of integers. Encoding and, most importantly, decoding of these arrays consumes considerable CPU time. Therefore, substantial effort has been made to reduce costs associated with compression and decompression. In particular, researchers have exploited the superscalar nature of modern processors and SIMD instructions. Nevertheless, we introduce a novel vectorized scheme called SIMD-BP128 that improves over previously proposed vectorized approaches. It is nearly twice as fast as the previously fastest schemes on desktop processors (varint-G8IU and PFOR). At the same time, SIMD-BP128 saves up to 2 bits per integer. For even better compression, we propose another new vectorized scheme (SIMD-FastPFOR) that has a compression ratio within 10% of a state-of-the-art scheme (Simple-8b) while being two times faster during decoding.Comment: For software, see https://github.com/lemire/FastPFor, For data, see http://boytsov.info/datasets/clueweb09gap

    Generic Construction of Efficient Matrix Product Operators

    Get PDF
    Matrix Product Operators (MPOs) are at the heart of the second-generation Density Matrix Renormalisation Group (DMRG) algorithm formulated in Matrix Product State language. We first summarise the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (Rescaled SVD, Deparallelisation and Delinearisation) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.Comment: 13 pages, 10 figure

    EIE: Efficient Inference Engine on Compressed Deep Neural Network

    Full text link
    State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120x energy saving; Exploiting sparsity saves 10x; Weight sharing gives 8x; Skipping zero activations from ReLU saves another 3x. Evaluated on nine DNN benchmarks, EIE is 189x and 13x faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102GOPS/s working directly on a compressed network, corresponding to 3TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88x10^4 frames/sec with a power dissipation of only 600mW. It is 24,000x and 3,400x more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9x, 19x and 3x better throughput, energy efficiency and area efficiency.Comment: External Links: TheNextPlatform: http://goo.gl/f7qX0L ; O'Reilly: https://goo.gl/Id1HNT ; Hacker News: https://goo.gl/KM72SV ; Embedded-vision: http://goo.gl/joQNg8 ; Talk at NVIDIA GTC'16: http://goo.gl/6wJYvn ; Talk at Embedded Vision Summit: https://goo.gl/7abFNe ; Talk at Stanford University: https://goo.gl/6lwuer. Published as a conference paper in ISCA 201

    TopSig: Topology Preserving Document Signatures

    Get PDF
    Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and from the theoretical perspective it positions the file signatures model in the class of Vector Space retrieval models.Comment: 12 pages, 8 figures, CIKM 201
    corecore