3 research outputs found

    Study: The Performance FFT and Wavelet Packet of OFDM Systems from through Demonstrated Numerical Examples

    Get PDF
    A major goal of the next-generation wireless communication systems is the development of a reliable highspeed wireless communication system that supports high user mobility. Multi-Carrier Modulation (MCM) technique is an attractive approach for high-speed digital radio communication systems in order to achieve a high spectral efficiency and to combat the frequency selectivity of the channel. Orthogonal frequency division multiplexing (OFDM) is a kind of MCM techniques. As proven by the success of OFDM, multicarrier modulation has been recognized as an efficient solution for wireless communications. Waveform bases other than sine functions could similarly be used for multicarrier systems in order to provide an alternative to OFDM. Wavelet Packet Modulation (WPM) was proposed as one of the multicarrier transmission methods like OFDM. Since it is a multicarrier transmission method. In this paper, we study the performance of FFT-OFDM and wavelet Packet (WP)- OFDM from through demonstrated numerical examples, and evaluation of FFT-OFDM and DWPT-OFDM in AWGN channel , Flat fading channel and Selective Fading Channel

    Interference mitigation techniques for wireless OFDM

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a promising multicarrier wireless system for transmission of high-rate data stream with spectral efficiency and fading immunity. Conventional OFDM system use efficient IFFT and FFT to multiplex the signals in parallel at the transmitter and receiver respectively. On the other hand, wavelet based OFDM system uses orthonormal wavelets which are derived from a multistage tree-structured wavelet family. The Fourier based and wavelet based OFDM systems are studied in this dissertation. Two types of QAM schemes, circular and square modulations are used to compare the performance in both OFDM systems. A new approach of determining exact BER for optimal circular QAM is proposed. In addition, the presence of narrowband interference (NBI) degrades the performance of OFDM systems. Thus, a mitigation technique is necessary to suppress NBI in an OFDM system. Recent mitigation techniques can be broadly categorized into frequency domain cancellation, receiver windowing and excision filtering. However, none of the techniques considers wavelet based OFDM. Therefore, an interference cancelation algorithm has been proposed to work for both OFDM platforms. The performance results of two OFDM schemes applicable to digital video broadcasting (DVB)-terrestrial system and under the effect of impulsive noise interference are also studied. BER performances are obtained in all results. It has been shown that wavelet based OFDM system has outperformed Fourier based OFDM system in many cases

    An Investigation of Orthogonal Wavelet Division Multiplexing Techniques as an Alternative to Orthogonal Frequency Division Multiplex Transmissions and Comparison of Wavelet Families and Their Children

    Get PDF
    Recently, issues surrounding wireless communications have risen to prominence because of the increase in the popularity of wireless applications. Bandwidth problems, and the difficulty of modulating signals across carriers, represent significant challenges. Every modulation scheme used to date has had limitations, and the use of the Discrete Fourier Transform in OFDM (Orthogonal Frequency Division Multiplex) is no exception. The restriction on further development of OFDM lies primarily within the type of transform it uses in the heart of its system, Fourier transform. OFDM suffers from sensitivity to Peak to Average Power Ratio, carrier frequency offset and wasting some bandwidth to guard successive OFDM symbols. The discovery of the wavelet transform has opened up a number of potential applications from image compression to watermarking and encryption. Very recently, work has been done to investigate the potential of using wavelet transforms within the communication space. This research will further investigate a recently proposed, innovative, modulation technique, Orthogonal Wavelet Division Multiplex, which utilises the wavelet transform opening a new avenue for an alternative modulation scheme with some interesting potential characteristics. Wavelet transform has many families and each of those families has children which each differ in filter length. This research consider comprehensively investigates the new modulation scheme, and proposes multi-level dynamic sub-banding as a tool to adapt variable signal bandwidths. Furthermore, all compactly supported wavelet families and their associated children of those families are investigated and evaluated against each other and compared with OFDM. The linear computational complexity of wavelet transform is less than the logarithmic complexity of Fourier in OFDM. The more important complexity is the operational complexity which is cost effectiveness, such as the time response of the system, the memory consumption and the number of iterative operations required for data processing. Those complexities are investigated for all available compactly supported wavelet families and their children and compared with OFDM. The evaluation reveals which wavelet families perform more effectively than OFDM, and for each wavelet family identifies which family children perform the best. Based on these results, it is concluded that the wavelet modulation scheme has some interesting advantages over OFDM, such as lower complexity and bandwidth conservation of up to 25%, due to the elimination of guard intervals and dynamic bandwidth allocation, which result in better cost effectiveness
    corecore