7 research outputs found

    A Comprehensive Study of Optimal Linear Pre-coding Schemes for a Massive Mu-MIMO Downlink System; a Survey

    Get PDF
    Massive Multi-User Multiple input Multiple Output (MU-MIMO) has become one of the leading area in terms of research in wireless communication due to the fact that the number of users and applications have increased tremendously, among all the aspects of massive mu-mimo systems out there, this manuscript focuses on linear precoding for downlink (DL) system at the base station(BS). This manuscript provides a comprehensive survey of precoding techniques for downlink transmission under a single-cell (SC) scenario. In a single-cell (SC) scenario the performance of the precoding techniques, Zero-Forcing (ZF), Match Filter (MF),Truncated polynomial Expansion and Regularized Zero-Forcing (RZF) are analyzed and compared in terms of Spectral Efficiency, and Achievable sum rate, a Rayleigh fading channel under perfect channel state information (CSI) is assumed. The template is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; please do not alter them

    Downlink Massive MIMO Systems: Reduction of Pilot Contamination for Channel Estimation with Perfect Knowledge of Large-Scale Fading

    Get PDF
    Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches . &nbsp

    Downlink Massive MIMO Systems: Reduction of Pilot Contamination for Channel Estimation with Perfect Knowledge of Large-Scale Fading

    Get PDF
    Massive multiple-input multiple-output (MIMO) technology is considered crucial for the development of future fifth-generation (5G) systems. However, a limitation of massive MIMO systems arises from the lack of orthogonality in the pilot sequences transmitted by users from a single cell to neighboring cells. To address this constraint, a proposed solution involves utilizing orthogonal pilot reuse sequences (PRS) and zero forced (ZF) pre-coding techniques. The primary objective of these techniques is to eradicate channel interference and improve the experience of end users who are afflicted by low-quality channels. The assessment of the channel involves evaluating its quality through channel assessment, conducting comprehensive evaluations of large-scale shutdowns, and analyzing the maximum transmission efficiency. By assigning PRS to a group of users, the proposed approach establishes lower bounds for the achievable downlink data rate (DR) and signal-to-interference noise ratio (SINR). These bounds are derived by considering the number of antennas approaches infinity which helps mitigate interference. Simulation results demonstrate that the utilization of improved channel evaluation and reduced loss leads to higher DR. When comparing different precoding techniques, the ZF method outperforms maximum ratio transmission (MRT) precoders in achieving a higher DR, particularly when the number of cells reaches . &nbsp

    Annulation des interférences inter-cellulaires pour les systèmes MIMO massif dans les réseaux hétérogènes 5G

    Get PDF
    De nos jours, le nombre des utilisateurs mobiles est en train d’exploser et cela va de même pour la demande en débit. En effet, cette demande croissante ainsi que le nombre considérable d’appareils qui sont appelés à être connectés (plus de 29 milliards d’ici 2022 selon Ericsson) oblige à entièrement repenser les technologies de communication mobile. De nouveaux systèmes doivent être développés afin de proposer une solution aux nouveaux usages qui vont naître de cette évolution. Le MIMO massif est une nouvelle technologie caractéristique de la 5G. Au lieu de mettre en place une seule antenne réceptrice-émettrice, le MIMO massif combine plusieurs antennes à la fois afin de renforcer le signal et réduire les interférences. Un tel système est très souvent étudié pour des transmissions multi-utilisateurs grâce à son potentiel à focaliser l’énergie. Parmi les nombreuses technologies caractéristiques de la 5G, nous considérons comme un bon candidat un système fonctionnant à des longueurs d’onde millimétriques afin de satisfaire le besoin du débit élevé sur des petites zones cibles. Cependant, plusieurs difficultés de conception apparaissent à une telle échelle de fréquence. Particulièrement, l’utilisation d’un nombre élevé de chaînes RF en parallèle semble plus compliquée. Pour remédier à ce problème, des systèmes dits hybrides ont vu le jour et ils sont identifiés comme des solutions pertinentes afin de contourner ces difficultés. Malgré les avantages apportés par les systèmes MIMO massifs à ondes millimétriques, il est important de comprendre ces innovations d’un point de vue d’évolution de l’architecture des réseaux. De nos jours, l’architecture moderne des réseaux cellulaires devient de plus en plus hétérogène, pour de bonnes raisons. Dans ces réseaux hétérogènes, les stations de base sont souvent augmentées avec un grand nombre de petites cellules. Ces dernières consistent en de petites stations de base, utilisées pour améliorer la couverture dans des environnements denses et pour augmenter la capacité du réseau. Cependant, plusieurs problèmes techniques naissent du déploiement dense de ces petites cellules. Particulièrement, leur coexistence avec les réseaux traditionnels et les différents niveaux de puissance de transmission peuvent être la source de fortes interférences entre les cellules. Le travail de ce mémoire se concentre sur la gestion des interférences intercellulaires dans un réseau hétérogène à spectre partagé. Ces interférences sont dues principalement au fait que les utilisateurs sont forcés de s’associer aux petites cellules en présence de macrocellules avoisinantes. Par conséquent, nous proposons une nouvelle architecture d’un réseau hétérogène comprenant plusieurs petites cellules qui coexistent avec une macrocellule équipée d’un grand nombre d’antennes au niveau de la macro station de base (MBS). L’objectif est de concevoir un nouveau schéma de précodage hybride permettant d’annuler les interférences intercellulaires sur le lien descendant (DL). Nous proposons d’appliquer uniquement un contrôle de phase pour coupler les sorties de la chaîne RF aux antennes d’émission, en utilisant des déphaseurs RF économiques. Un précodage numérique est ensuite effectué à la station de base pour gérer les interférences intercellulaires et multi-utilisateurs en s’appuyant sur l’espace nul des canaux d’interférences. Enfin, des résultats de simulations démontrant l’efficacité spectrale de l’approche proposée sont présentées et comparées avec diverses techniques de précodageNowadays, the number of mobile users and the demand for bandwidth are exploding. Indeed, this growing demand and the considerable number of devices to be connected (more than 29 billion by 2022 according to Ericsson) requires a complete rethink of the mobile communication technologies. New systems must be developed in order to provide a solution to the new uses that will emerge from this evolution. Massive MIMO is a new technology characteristic of 5G. Instead of implementing a single transmitting/receiving antenna, massive MIMO system combines several antennas to rein-force the signal and reduce the interference. Such a system is very often studied for multi-user transmissions thanks to its potential to focus energy. Among the many characteristic technologies of 5G, we consider as good candidates, those operating at millimetre wavelengths to satisfy the need for high throughput in small targeted areas. However, several design difficulties occur at such a frequency scale. In particular, the use of a large number of RF chains in parallel is more complicated. To remedy this problem, hybrid systems have emerged and are identified as relevant solutions to overcome these difficulties. Despite the benefits of massive MIMO systems and millimetre wave, it is important to understand these innovations from the perspective of network architecture evolution. Nowadays, the modern architecture of cellular networks is becoming more and more heterogeneous, for good reasons. In these heterogeneous networks, base stations are often augmented with a large number of small cells. It consists of small base stations, used to improve coverage in dense environments and increase network capacity. However, several technical problems arise from the dense deployment of these small cells. In particular, their coexistence with traditional networks and the different levels of transmission power can be the source of strong interferences between cells. In this thesis, we focus on the intercellular interference management in a heterogeneous shared spectrum network. This interference is mainly due to the fact that users are forced to be associated with small cells in the presence of surrounding macrocells. Therefore, we propose a new architecture of a heterogeneous network comprising several small cells that coexist with a macrocell equipped with a large number of antennas at the macro base station (MBS). The goal is to design a new hybrid precoding scheme to cancel intercellular interference on the downlink transmissions (DL). We propose to apply only phase control to couple the outputs of the RF chain to the transmitting antennas, using economical RF phase shifters. Digital precoding is then performed at the base station to manage intercellular and multi-user interference based on the null space of the interference channels. Finally, simulation results demonstrating the spectral efficiency of the proposed approach are presented and compared with various precoding technique

    Fast converging robust beamforming for downlink massive MIMO systems in heterogenous networks

    Get PDF
    Massive multiple-input multiple-output (MIMO) is an emerging technology, which is an enabler for future broadband wireless networks that support high speed connection of densely populated areas. Application of massive MIMO at the macrocell base stations in heterogeneous networks (HetNets) offers an increase in throughput without increasing the bandwidth, but with reduced power consumption. This research investigated the optimisation problem of signal-to-interference-plus-noise ratio (SINR) balancing for macrocell users in a typical HetNet scenario with massive MIMO at the base station. The aim was to present an efficient beamforming solution that would enhance inter-tier interference mitigation in heterogeneous networks. The system model considered the case of perfect channel state information (CSI) acquisition at the transmitter, as well as the case of imperfect CSI at the transmitter. A fast converging beamforming solution, which is applicable to both channel models, is presented. The proposed beamforming solution method applies the matrix stuffing technique and the alternative direction method of multipliers, in a two-stage fashion, to give a modestly accurate and efficient solution. In the first stage, the original optimisation problem is transformed into standard second-order conic program (SOCP) form using the Smith form reformulation and applying the matrix stuffing technique for fast transformation. The second stage uses the alternative direction method of multipliers to solve the SOCP-based optimisation problem. Simulations to evaluate the SINR performance of the proposed solution method were carried out with supporting software-based simulations using relevant MATLAB toolboxes. The simulation results of a typical single cell in a HetNet show that the proposed solution gives performance with modest accuracy, while converging in an efficient manner, compared to optimal solutions achieved by state-of-the-art modelling languages and interior-point solvers. This is particularly for cases when the number of antennas at the base station increases to large values, for both models of perfect CSI and imperfect CSI. This makes the solution method attractive for practical implementation in heterogeneous networks with large scale antenna arrays at the macrocell base station.Dissertation (MEng)--University of Pretoria, 2018.Electrical, Electronic and Computer EngineeringMEngUnrestricte
    corecore