5,809 research outputs found

    Performance and Detection of M-ary Frequency Shift Keying in Triple Layer Wireless Sensor Network

    Full text link
    This paper proposes an innovative triple layer Wireless Sensor Network (WSN) system, which monitors M-ary events like temperature, pressure, humidity, etc. with the help of geographically distributed sensors. The sensors convey signals to the fusion centre using M-ary Frequency Shift Keying (MFSK)modulation scheme over independent Rayleigh fading channels. At the fusion centre, detection takes place with the help of Selection Combining (SC) diversity scheme, which assures a simple and economical receiver circuitry. With the aid of various simulations, the performance and efficacy of the system has been analyzed by varying modulation levels, number of local sensors and probability of correct detection by the sensors. The study endeavors to prove that triple layer WSN system is an economical and dependable system capable of correct detection of M-ary events by integrating frequency diversity together with antenna diversity.Comment: 13 pages; International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.4, July 201

    Dual-Branch MRC Receivers under Spatial Interference Correlation and Nakagami Fading

    Full text link
    Despite being ubiquitous in practice, the performance of maximal-ratio combining (MRC) in the presence of interference is not well understood. Because the interference received at each antenna originates from the same set of interferers, but partially de-correlates over the fading channel, it possesses a complex correlation structure. This work develops a realistic analytic model that accurately accounts for the interference correlation using stochastic geometry. Modeling interference by a Poisson shot noise process with independent Nakagami fading, we derive the link success probability for dual-branch interference-aware MRC. Using this result, we show that the common assumption that all receive antennas experience equal interference power underestimates the true performance, although this gap rapidly decays with increasing the Nakagami parameter mIm_{\text{I}} of the interfering links. In contrast, ignoring interference correlation leads to a highly optimistic performance estimate for MRC, especially for large mIm_{\text{I}}. In the low outage probability regime, our success probability expression can be considerably simplified. Observations following from the analysis include: (i) for small path loss exponents, MRC and minimum mean square error combining exhibit similar performance, and (ii) the gains of MRC over selection combining are smaller in the interference-limited case than in the well-studied noise-limited case.Comment: to appear in IEEE Transactions on Communication

    Diversity textile antenna systems for firefighters

    Get PDF
    Off-body communication systems are valuable to improve the security of rescue workers by allowing them to transmit vital information collected by sensors. As rescue workers often work in indoor environments characterized by many obstructions, non line-of-sight propagation with multipath effects and shadowing compromises the performance of the wireless communication. The reliability is enhanced drastically by the use of diversity techniques. In the measurement campaign presented, the performance of such an off-body diversity system is compared for two antenna configurations: two dual-polarized antennas, versus four circularly polarized antennas. The actual data transmission confirms the marginal difference between the two configurations, suggesting the use of dual-polarized systems for reasons of user convenience and ease of practical implementation
    • …
    corecore