795 research outputs found

    Exploration autonome et efficiente de chantiers miniers souterrains inconnus avec un drone filaire

    Get PDF
    Abstract: Underground mining stopes are often mapped using a sensor located at the end of a pole that the operator introduces into the stope from a secure area. The sensor emits laser beams that provide the distance to a detected wall, thus creating a 3D map. This produces shadow zones and a low point density on the distant walls. To address these challenges, a research team from the Université de Sherbrooke is designing a tethered drone equipped with a rotating LiDAR for this mission, thus benefiting from several points of view. The wired transmission allows for unlimited flight time, shared computing, and real-time communication. For compatibility with the movement of the drone after tether entanglements, the excess length is integrated into an onboard spool, contributing to the drone payload. During manual piloting, the human factor causes problems in the perception and comprehension of a virtual 3D environment, as well as the execution of an optimal mission. This thesis focuses on autonomous navigation in two aspects: path planning and exploration. The system must compute a trajectory that maps the entire environment, minimizing the mission time and respecting the maximum onboard tether length. Path planning using a Rapidly-exploring Random Tree (RRT) quickly finds a feasible path, but the optimization is computationally expensive and the performance is variable and unpredictable. Exploration by the frontier method is representative of the space to be explored and the path can be optimized by solving a Traveling Salesman Problem (TSP) but existing techniques for a tethered drone only consider the 2D case and do not optimize the global path. To meet these challenges, this thesis presents two new algorithms. The first one, RRT-Rope, produces an equal or shorter path than existing algorithms in a significantly shorter computation time, up to 70% faster than the next best algorithm in a representative environment. A modified version of RRT-connect computes a feasible path, shortened with a deterministic technique that takes advantage of previously added intermediate nodes. The second algorithm, TAPE, is the first 3D cavity exploration method that focuses on minimizing mission time and unwound tether length. On average, the overall path is 4% longer than the method that solves the TSP, but the tether remains under the allowed length in 100% of the simulated cases, compared to 53% with the initial method. The approach uses a 2-level hierarchical architecture: global planning solves a TSP after frontier extraction, and local planning minimizes the path cost and tether length via a decision function. The integration of these two tools in the NetherDrone produces an intelligent system for autonomous exploration, with semi-autonomous features for operator interaction. This work opens the door to new navigation approaches in the field of inspection, mapping, and Search and Rescue missions.La cartographie des chantiers miniers souterrains est souvent réalisée à l’aide d’un capteur situé au bout d’une perche que l’opérateur introduit dans le chantier, depuis une zone sécurisée. Le capteur émet des faisceaux laser qui fournissent la distance à un mur détecté, créant ainsi une carte en 3D. Ceci produit des zones d’ombres et une faible densité de points sur les parois éloignées. Pour relever ces défis, une équipe de recherche de l’Université de Sherbrooke conçoit un drone filaire équipé d’un LiDAR rotatif pour cette mission, bénéficiant ainsi de plusieurs points de vue. La transmission filaire permet un temps de vol illimité, un partage de calcul et une communication en temps réel. Pour une compatibilité avec le mouvement du drone lors des coincements du fil, la longueur excédante est intégrée dans une bobine embarquée, qui contribue à la charge utile du drone. Lors d’un pilotage manuel, le facteur humain entraîne des problèmes de perception et compréhension d’un environnement 3D virtuel, et d’exécution d’une mission optimale. Cette thèse se concentre sur la navigation autonome sous deux aspects : la planification de trajectoire et l’exploration. Le système doit calculer une trajectoire qui cartographie l’environnement complet, en minimisant le temps de mission et en respectant la longueur maximale de fil embarquée. La planification de trajectoire à l’aide d’un Rapidly-exploring Random Tree (RRT) trouve rapidement un chemin réalisable, mais l’optimisation est coûteuse en calcul et la performance est variable et imprévisible. L’exploration par la méthode des frontières est représentative de l’espace à explorer et le chemin peut être optimisé en résolvant un Traveling Salesman Problem (TSP), mais les techniques existantes pour un drone filaire ne considèrent que le cas 2D et n’optimisent pas le chemin global. Pour relever ces défis, cette thèse présente deux nouveaux algorithmes. Le premier, RRT-Rope, produit un chemin égal ou plus court que les algorithmes existants en un temps de calcul jusqu’à 70% plus court que le deuxième meilleur algorithme dans un environnement représentatif. Une version modifiée de RRT-connect calcule un chemin réalisable, raccourci avec une technique déterministe qui tire profit des noeuds intermédiaires préalablement ajoutés. Le deuxième algorithme, TAPE, est la première méthode d’exploration de cavités en 3D qui minimise le temps de mission et la longueur du fil déroulé. En moyenne, le trajet global est 4% plus long que la méthode qui résout le TSP, mais le fil reste sous la longueur autorisée dans 100% des cas simulés, contre 53% avec la méthode initiale. L’approche utilise une architecture hiérarchique à 2 niveaux : la planification globale résout un TSP après extraction des frontières, et la planification locale minimise le coût du chemin et la longueur de fil via une fonction de décision. L’intégration de ces deux outils dans le NetherDrone produit un système intelligent pour l’exploration autonome, doté de fonctionnalités semi-autonomes pour une interaction avec l’opérateur. Les travaux réalisés ouvrent la porte à de nouvelles approches de navigation dans le domaine des missions d’inspection, de cartographie et de recherche et sauvetage

    2023- The Twenty-seventh Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-seventh Annual Symposium of Student Scholars, held on April 18-21, 2023. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1027/thumbnail.jp

    Structured machine learning models for robustness against different factors of variability in robot control

    Get PDF
    An important feature of human sensorimotor skill is our ability to learn to reuse them across different environmental contexts, in part due to our understanding of attributes of variability in these environments. This thesis explores how the structure of models used within learning for robot control could similarly help autonomous robots cope with variability, hence achieving skill generalisation. The overarching approach is to develop modular architectures that judiciously combine different forms of inductive bias for learning. In particular, we consider how models and policies should be structured in order to achieve robust behaviour in the face of different factors of variation - in the environment, in objects and in other internal parameters of a policy - with the end goal of more robust, accurate and data-efficient skill acquisition and adaptation. At a high level, variability in skill is determined by variations in constraints presented by the external environment, and in task-specific perturbations that affect the specification of optimal action. A typical example of environmental perturbation would be variation in lighting and illumination, affecting the noise characteristics of perception. An example of task perturbations would be variation in object geometry, mass or friction, and in the specification of costs associated with speed or smoothness of execution. We counteract these factors of variation by exploring three forms of structuring: utilising separate data sets curated according to the relevant factor of variation, building neural network models that incorporate this factorisation into the very structure of the networks, and learning structured loss functions. The thesis is comprised of four projects exploring this theme within robotics planning and prediction tasks. Firstly, in the setting of trajectory prediction in crowded scenes, we explore a modular architecture for learning static and dynamic environmental structure. We show that factorising the prediction problem from the individual representations allows for robust and label efficient forward modelling, and relaxes the need for full model re-training in new environments. This modularity explicitly allows for a more flexible and interpretable adaptation of trajectory prediction models to using pre-trained state of the art models. We show that this results in more efficient motion prediction and allows for performance comparable to the state-of-the-art supervised 2D trajectory prediction. Next, in the domain of contact-rich robotic manipulation, we consider a modular architecture that combines model-free learning from demonstration, in particular dynamic movement primitives (DMP), with modern model-free reinforcement learning (RL), using both on-policy and off-policy approaches. We show that factorising the skill learning problem to skill acquisition and error correction through policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contact-rich manipulation. Our empirical evaluation demonstrates how to best do this with DMPs and propose “residual Learning from Demonstration“ (rLfD), a framework that combines DMPs with RL to learn a residual correction policy. Our evaluations, performed both in simulation and on a physical system, suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs. Last but not least, our study shows that the extracted correction policies can be transferred to different geometries and frictions through few-shot task adaptation. Third, we employ meta learning to learn time-invariant reward functions, wherein both the objectives of a task (i.e., the reward functions) and the policy for performing that task optimally are learnt simultaneously. We propose a novel inverse reinforcement learning (IRL) formulation that allows us to 1) vary the length of execution by learning time-invariant costs, and 2) relax the temporal alignment requirements for learning from demonstration. We apply our method to two different types of cost formulations and evaluate their performance in the context of learning reward functions for simulated placement and peg in hole tasks executed on a 7DoF Kuka IIWA arm. Our results show that our approach enables learning temporally invariant rewards from misaligned demonstration that can also generalise spatially to out of distribution tasks. Finally, we employ our observations to evaluate adversarial robustness in the context of transfer learning from a source trained on CIFAR 100 to a target network trained on CIFAR 10. Specifically, we study the effects of using robust optimisation in the source and target networks. This allows us to identify transfer learning strategies under which adversarial defences are successfully retained, in addition to revealing potential vulnerabilities. We study the extent to which adversarially robust features can preserve their defence properties against black and white-box attacks under three different transfer learning strategies. Our empirical evaluations give insights on how well adversarial robustness under transfer learning can generalise.

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Advances in flexible manipulation through the application of AI-based techniques

    Get PDF
    282 p.Objektuak hartu eta uztea oinarrizko bi eragiketa dira ia edozein aplikazio robotikotan. Gaur egun, "pick and place" aplikazioetarako erabiltzen diren robot industrialek zeregin sinpleak eta errepikakorrak egiteko duten eraginkortasuna dute ezaugarri. Hala ere, sistema horiek oso zurrunak dira, erabat kontrolatutako inguruneetan lan egiten dute, eta oso kostu handia dakarte beste zeregin batzuk egiteko birprogramatzeak. Gaur egun, industria-ingurune desberdinetako zereginak daude (adibidez, logistika-ingurune batean eskaerak prestatzea), zeinak objektuak malgutasunez manipulatzea eskatzen duten, eta oraindik ezin izan dira automatizatu beren izaera dela-eta. Automatizazioa zailtzen duten botila-lepo nagusiak manipulatu beharreko objektuen aniztasuna, roboten trebetasun falta eta kontrolatu gabeko ingurune dinamikoen ziurgabetasuna dira.Adimen artifizialak (AA) gero eta paper garrantzitsuagoa betetzen du robotikaren barruan, robotei zeregin konplexuak betetzeko beharrezko adimena ematen baitie. Gainera, AAk benetako esperientzia erabiliz portaera konplexuak ikasteko aukera ematen du, programazioaren kostua nabarmen murriztuz. Objektuak manipulatzeko egungo sistema robotikoen mugak ikusita, lan honen helburu nagusia manipulazio-sistemen malgutasuna handitzea da AAn oinarritutako algoritmoak erabiliz, birprogramatu beharrik gabe ingurune dinamikoetara egokitzeko beharrezko gaitasunak emanez

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin

    How worms move in 3D

    Get PDF
    Animals that live in the sky, underwater or underground display unique three dimensional behaviours made possible by their ability to generate movement in all directions. As animals explore their environment, they constantly adapt their locomotion strategies to balance factors such as distance travelled, speed, and energy expenditure. While exploration strategies have been widely studied across a variety of species, how animals explore 3D space remains an open problem. The nematode Caenorhabditis elegans presents an ideal candidate for the study of 3D exploration as it is naturally found in complex fluid and granular environments and is well sized (~1mm long) for the simultaneous capture of individual postures and long term trajectories using a fixed imaging setup. However, until recently C. elegans has been studied almost exclusively in planar environments and in 3D neither its modes of locomotion nor its exploration strategies are known. Here we present methods for reconstructing microscopic postures and tracking macroscopic trajectories from a large corpus of triaxial recordings of worms freely exploring complex gelatinous fluids. To account for the constantly changing optical properties of these gels we develop a novel differentiable renderer to construct images from 3D postures for direct comparison with the recorded images. The method is robust to interference such as air bubbles and dirt trapped in the gel, stays consistent through complex sequences of postures and recovers reliable estimates from low-resolution, blurry images. Using this approach we generate a large dataset of 3D exploratory trajectories (over 6 hours) and midline postures (over 4 hours). We find that C. elegans explore 3D space through the composition of quasi-planar regions separated by turns and variable-length runs. To achieve this, C. elegans use locomotion gaits and complex manoeuvres that differ from those previously observed on an agar surface. We show that the associated costs of locomotion increase with non-planarity and we develop a mathematical model to probe the implications of this connection. We find that quasi-planar strategies (such as we find in the data) yield the largest volumes explored as they provide a balance between 3D coverage and trajectory distance. Taken together, our results link locomotion primitives with exploration strategies in the context of short term volumetric foraging to provide a first integrated study into how worms move in 3D

    Electronic musical instruments as interactive exhibits in museums

    Get PDF
    Whilst recent museum exhibitions have explored electronic musical instruments, the interpretational focus has been on materiality rather than sounds produced. Similarly, whilst authors have ‘followed the instruments’ to find the people who used and designed them, those who create and shape their sounds remain comparatively hidden. To address this problem, this thesis introduces sound genealogy – a methodology towards following the evolution of a sound through material networks and people - as an interpretational framework to support exhibition teams in explicitly connecting sounds to instrument interfaces using multi-sensory interactive exhibits. Adopting this methodology will improve visitors’ experiences of music and sound content, helping them connect sounds from their lived experiences to the instruments associated with them: demonstrating how material networks can influence a sound’s popularity and musical value over time, whilst drawing attention to the people involved in the design and use of both sounds and instruments. Chapter one positions this research within contemporary exhibition practices and analyses the methodologies and literature that define the scope for upcoming discussions. The involvement of the UK’s Science Museum Group institutions is also highlighted. Chapters two to four present three case-study insights based on observations of objects and their sounds, and the use of representative exhibits, in North American, European, and British museums. These case studies were chosen so as to represent a range of instrument categories (synthesizers, samplers, drum machines) and interpretational foci (interface, sound, function). Interview data obtained from exhibition team members highlights the strategies and challenges in co-creating positive exhibit experiences for diverse audiences. Evidence from these case studies also supports the analyses of theories and concepts from museum studies, science and technology studies, and sound studies in chapters five and six. This helps to position - and advocate for - the adoption of a sound genealogy methodology in demonstrating the value of sound through interactivity. Additionally, the anticipation and management of visitor behaviours is considered in the context of successfully attaining learning and entertainment goals. Finally, chapters seven and eight document the creation and evaluation of an original interactive exhibit by the author, supported by the sound genealogy methodology
    • …
    corecore