5 research outputs found

    Development of a Novel Dataset and Tools for Non-Invasive Fetal Electrocardiography Research

    Get PDF
    This PhD thesis presents the development of a novel open multi-modal dataset for advanced studies on fetal cardiological assessment, along with a set of signal processing tools for its exploitation. The Non-Invasive Fetal Electrocardiography (ECG) Analysis (NInFEA) dataset features multi-channel electrophysiological recordings characterized by high sampling frequency and digital resolution, maternal respiration signal, synchronized fetal trans-abdominal pulsed-wave Doppler (PWD) recordings and clinical annotations provided by expert clinicians at the time of the signal collection. To the best of our knowledge, there are no similar dataset available. The signal processing tools targeted both the PWD and the non-invasive fetal ECG, exploiting the recorded dataset. About the former, the study focuses on the processing aimed at the preparation of the signal for the automatic measurement of relevant morphological features, already adopted in the clinical practice for cardiac assessment. To this aim, a relevant step is the automatic identification of the complete and measurable cardiac cycles in the PWD videos: a rigorous methodology was deployed for the analysis of the different processing steps involved in the automatic delineation of the PWD envelope, then implementing different approaches for the supervised classification of the cardiac cycles, discriminating between complete and measurable vs. malformed or incomplete ones. Finally, preliminary measurement algorithms were also developed in order to extract clinically relevant parameters from the PWD. About the fetal ECG, this thesis concentrated on the systematic analysis of the adaptive filters performance for non-invasive fetal ECG extraction processing, identified as the reference tool throughout the thesis. Then, two studies are reported: one on the wavelet-based denoising of the extracted fetal ECG and another one on the fetal ECG quality assessment from the analysis of the raw abdominal recordings. Overall, the thesis represents an important milestone in the field, by promoting the open-data approach and introducing automated analysis tools that could be easily integrated in future medical devices

    Annotated real and synthetic datasets for non-invasive foetal electrocardiography post-processing benchmarking

    Get PDF
    Non-invasive foetal electrocardiography (fECG) can be obtained at different gestational ages by means of surface electrodes applied on the maternal abdomen. The signal-to-noise ratio (SNR) of the fECG is usually low, due to the small size of the foetal heart, the foetal-maternal compartment, the maternal physiological interferences and the instrumental noise. Even after powerful fECG extraction algorithms, a post-processing step could be required to improve the SNR of the fECG signal. In order to support the researchers in the field, this work presents an annotated dataset of real and synthetic signals, which was used for the study “Wavelet Denoising as a Post-Processing Enhancement Method for Non-Invasive Foetal Electrocardiography” [1]. Specifically, 21 15 s-long fECG, dual-channel signals obtained by multi-reference adaptive filtering from real electrophysiological recordings were included. The annotation of the foetal R peaks by an expert cardiologist was also provided. Recordings were performed on 17 voluntary pregnant women between the 21st and the 27th week of gestation. The raw recordings were also included for the researchers interested in applying a different fECG extraction algorithm. Moreover, 40 10 s-long synthetic non-invasive fECG were provided, simulating the electrode placement of one of the abdominal leads used for the real dataset. The annotation of the foetal R peaks was also provided, as generated by the FECGSYN tool used for the signals’ creation. Clean fECG signals were also included for the computation of indexes of signal morphology preservation. All the signals are sampled at 2048 Hz. The data provided in this work can be used as a benchmark for fECG post-processing techniques but can also be used as raw signals for researchers interested in foetal QRS detection algorithms and fECG extraction methods

    Wavelet denoising as a post-processing enhancement method for non-invasive foetal electrocardiography

    Get PDF
    Background and Objective: The detection of a clean and undistorted foetal electrocardiogram (fECG) from non-invasive abdominal recordings is an open research issue. Several physiological and instrumental noise sources hamper this process, even after that powerful fECG extraction algorithms have been used. Wavelet denoising is widely used for the improvement of the SNR in biomedical signal processing. This work aims to systematically assess conventional and unconventional wavelet denoising approaches for the post-processing of fECG signals by providing evidence of their effectiveness in improving fECG SNR while preserving the morphology of the signal of interest. Methods: The stationary wavelet transform (SWT) and the stationary wavelet packet transform (SWPT) were considered, due to their different granularity in the sub-band decomposition of the signal. Three thresholds from the literature, either conventional (Minimax and Universal) and unconventional, were selected. To this aim, the unconventional one was adapted for the first time to SWPT by trying different approaches. The decomposition depth was studied in relation to the characteristics of the fECG signal. Synthetic and real datasets, publicly available for benchmarking and research, were used for quantitative analysis in terms of noise reduction, foetal QRS detection performance and preservation of fECG morphology. Results: The adoption of wavelet denoising approaches generally improved the SNR. Interestingly, the SWT methods outperformed the SWPT ones in morphology preservation (p<0.04) and SNR (p<0.0003), despite their coarser granularity in the sub-band analysis. Remarkably, the Han et al. threshold, adopted for the first time for fECG processing, provided the best quality improvement (p<0.003). Conclusions: The findings of our systematic analysis suggest that particular care must be taken when selecting and using wavelet denoising for non-invasive fECG signal post-processing. In particular, despite the general noise reduction capability, signal morphology can be significantly altered on the basis of the parameterization of the wavelet methods. Remarkably, the adoption of a finer sub-band decomposition provided by the wavelet packet was not able to improve the quality of the processing

    A non-invasive multimodal foetal ECG–Doppler dataset for antenatal cardiology research

    Get PDF
    Non-invasive foetal electrocardiography (fECG) continues to be an open topic for research. The development of standard algorithms for the extraction of the fECG from the maternal electrophysiological interference is limited by the lack of publicly available reference datasets that could be used to benchmark different algorithms while providing a ground truth for foetal heart activity when an invasive scalp lead is unavailable. In this work, we present the Non-Invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research (NInFEA), the first open-access multimodal early-pregnancy dataset in the field that features simultaneous non-invasive electrophysiological recordings and foetal pulsed-wave Doppler (PWD). The dataset is mainly conceived for researchers working on fECG signal processing algorithms. The dataset includes 60 entries from 39 pregnant women, between the 21st and 27th week of gestation. Each dataset entry comprises 27 electrophysiological channels (2048 Hz, 22 bits), a maternal respiration signal, synchronised foetal trans-abdominal PWD and clinical annotations provided by expert clinicians during signal acquisition. MATLAB snippets for data processing are also provided

    Comparison of Single-and Multi-reference QRD-RLS adaptive filter for non-invasive fetal electrocardiography

    No full text
    Non-invasive fetal electrocardiography (ECG) would allow accessing very relevant information on fetal cardiac function, especially for arrhythmias. However, the signal-to-noise ratio is significantly low, since fetal ECG is embedded in instrumental noise and spectrally overlapping maternal electrophysiological interferences. Among the different techniques proposed in the scientific literature, some variants of adaptive filters have been proposed for maternal ECG cancellation and fetal QRS complex enhancement. Such techniques encompass approaches using one or more reference signals, which is an important aspect for the development of accurate and unobtrusive monitoring systems.In this work, this aspect is systematically analyzed by comparing single-and multi-reference implementations of the QRD-RLS adaptive filter, and by challenging them in the fetal ECG enhancement on three abdominal leads differently oriented in space. The performance is assessed on real data in terms of signal-to-interference ratio, detection of fetal QRS complexes and maternal ECG attenuation. Multi-reference implementation reveals its superiority, whereas the single-reference implementation suffers from the electrodes positioning and cannot be trustily used even for the fetal heart rate only on the adopted dataset
    corecore