56,314 research outputs found

    Retrieving Multi-Entity Associations: An Evaluation of Combination Modes for Word Embeddings

    Full text link
    Word embeddings have gained significant attention as learnable representations of semantic relations between words, and have been shown to improve upon the results of traditional word representations. However, little effort has been devoted to using embeddings for the retrieval of entity associations beyond pairwise relations. In this paper, we use popular embedding methods to train vector representations of an entity-annotated news corpus, and evaluate their performance for the task of predicting entity participation in news events versus a traditional word cooccurrence network as a baseline. To support queries for events with multiple participating entities, we test a number of combination modes for the embedding vectors. While we find that even the best combination modes for word embeddings do not quite reach the performance of the full cooccurrence network, especially for rare entities, we observe that different embedding methods model different types of relations, thereby indicating the potential for ensemble methods.Comment: 4 pages; Accepted at SIGIR'1

    Semantic Wide and Deep Learning for Detecting Crisis-Information Categories on Social Media

    Get PDF
    When crises hit, many flog to social media to share or consume information related to the event. Social media posts during crises tend to provide valuable reports on affected people, donation offers, help requests, advice provision, etc. Automatically identifying the category of information (e.g., reports on affected individuals, donations and volunteers) contained in these posts is vital for their efficient handling and consumption by effected communities and concerned organisations. In this paper, we introduce Sem-CNN; a wide and deep Convolutional Neural Network (CNN) model designed for identifying the category of information contained in crisis-related social media content. Unlike previous models, which mainly rely on the lexical representations of words in the text, the proposed model integrates an additional layer of semantics that represents the named entities in the text, into a wide and deep CNN network. Results show that the Sem-CNN model consistently outperforms the baselines which consist of statistical and non-semantic deep learning models

    Word Embeddings for Entity-annotated Texts

    Full text link
    Learned vector representations of words are useful tools for many information retrieval and natural language processing tasks due to their ability to capture lexical semantics. However, while many such tasks involve or even rely on named entities as central components, popular word embedding models have so far failed to include entities as first-class citizens. While it seems intuitive that annotating named entities in the training corpus should result in more intelligent word features for downstream tasks, performance issues arise when popular embedding approaches are naively applied to entity annotated corpora. Not only are the resulting entity embeddings less useful than expected, but one also finds that the performance of the non-entity word embeddings degrades in comparison to those trained on the raw, unannotated corpus. In this paper, we investigate approaches to jointly train word and entity embeddings on a large corpus with automatically annotated and linked entities. We discuss two distinct approaches to the generation of such embeddings, namely the training of state-of-the-art embeddings on raw-text and annotated versions of the corpus, as well as node embeddings of a co-occurrence graph representation of the annotated corpus. We compare the performance of annotated embeddings and classical word embeddings on a variety of word similarity, analogy, and clustering evaluation tasks, and investigate their performance in entity-specific tasks. Our findings show that it takes more than training popular word embedding models on an annotated corpus to create entity embeddings with acceptable performance on common test cases. Based on these results, we discuss how and when node embeddings of the co-occurrence graph representation of the text can restore the performance.Comment: This paper is accepted in 41st European Conference on Information Retrieva

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1
    corecore