224,335 research outputs found

    Understanding and Comparing Deep Neural Networks for Age and Gender Classification

    Full text link
    Recently, deep neural networks have demonstrated excellent performances in recognizing the age and gender on human face images. However, these models were applied in a black-box manner with no information provided about which facial features are actually used for prediction and how these features depend on image preprocessing, model initialization and architecture choice. We present a study investigating these different effects. In detail, our work compares four popular neural network architectures, studies the effect of pretraining, evaluates the robustness of the considered alignment preprocessings via cross-method test set swapping and intuitively visualizes the model's prediction strategies in given preprocessing conditions using the recent Layer-wise Relevance Propagation (LRP) algorithm. Our evaluations on the challenging Adience benchmark show that suitable parameter initialization leads to a holistic perception of the input, compensating artefactual data representations. With a combination of simple preprocessing steps, we reach state of the art performance in gender recognition.Comment: 8 pages, 5 figures, 5 tables. Presented at ICCV 2017 Workshop: 7th IEEE International Workshop on Analysis and Modeling of Faces and Gesture

    The computer nose best

    Get PDF

    The Devil of Face Recognition is in the Noise

    Full text link
    The growing scale of face recognition datasets empowers us to train strong convolutional networks for face recognition. While a variety of architectures and loss functions have been devised, we still have a limited understanding of the source and consequence of label noise inherent in existing datasets. We make the following contributions: 1) We contribute cleaned subsets of popular face databases, i.e., MegaFace and MS-Celeb-1M datasets, and build a new large-scale noise-controlled IMDb-Face dataset. 2) With the original datasets and cleaned subsets, we profile and analyze label noise properties of MegaFace and MS-Celeb-1M. We show that a few orders more samples are needed to achieve the same accuracy yielded by a clean subset. 3) We study the association between different types of noise, i.e., label flips and outliers, with the accuracy of face recognition models. 4) We investigate ways to improve data cleanliness, including a comprehensive user study on the influence of data labeling strategies to annotation accuracy. The IMDb-Face dataset has been released on https://github.com/fwang91/IMDb-Face.Comment: accepted to ECCV'1

    Training methods for facial image comparison: a literature review

    Get PDF
    This literature review was commissioned to explore the psychological literature relating to facial image comparison with a particular emphasis on whether individuals can be trained to improve performance on this task. Surprisingly few studies have addressed this question directly. As a consequence, this review has been extended to cover training of face recognition and training of different kinds of perceptual comparisons where we are of the opinion that the methodologies or findings of such studies are informative. The majority of studies of face processing have examined face recognition, which relies heavily on memory. This may be memory for a face that was learned recently (e.g. minutes or hours previously) or for a face learned longer ago, perhaps after many exposures (e.g. friends, family members, celebrities). Successful face recognition, irrespective of the type of face, relies on the ability to retrieve the to-berecognised face from long-term memory. This memory is then compared to the physically present image to reach a recognition decision. In contrast, in face matching task two physical representations of a face (live, photographs, movies) are compared and so long-term memory is not involved. Because the comparison is between two present stimuli rather than between a present stimulus and a memory, one might expect that face matching, even if not an easy task, would be easier to do and easier to learn than face recognition. In support of this, there is evidence that judgment tasks where a presented stimulus must be judged by a remembered standard are generally more cognitively demanding than judgments that require comparing two presented stimuli Davies & Parasuraman, 1982; Parasuraman & Davies, 1977; Warm and Dember, 1998). Is there enough overlap between face recognition and matching that it is useful to look at the literature recognition? No study has directly compared face recognition and face matching, so we turn to research in which people decided whether two non-face stimuli were the same or different. In these studies, accuracy of comparison is not always better when the comparator is present than when it is remembered. Further, all perceptual factors that were found to affect comparisons of simultaneously presented objects also affected comparisons of successively presented objects in qualitatively the same way. Those studies involved judgments about colour (Newhall, Burnham & Clark, 1957; Romero, Hita & Del Barco, 1986), and shape (Larsen, McIlhagga & Bundesen, 1999; Lawson, Bülthoff & Dumbell, 2003; Quinlan, 1995). Although one must be cautious in generalising from studies of object processing to studies of face processing (see, e.g., section comparing face processing to object processing), from these kinds of studies there is no evidence to suggest that there are qualitative differences in the perceptual aspects of how recognition and matching are done. As a result, this review will include studies of face recognition skill as well as face matching skill. The distinction between face recognition involving memory and face matching not involving memory is clouded in many recognition studies which require observers to decide which of many presented faces matches a remembered face (e.g., eyewitness studies). And of course there are other forensic face-matching tasks that will require comparison to both presented and remembered comparators (e.g., deciding whether any person in a video showing a crowd is the target person). For this reason, too, we choose to include studies of face recognition as well as face matching in our revie

    Quantifying Facial Age by Posterior of Age Comparisons

    Full text link
    We introduce a novel approach for annotating large quantity of in-the-wild facial images with high-quality posterior age distribution as labels. Each posterior provides a probability distribution of estimated ages for a face. Our approach is motivated by observations that it is easier to distinguish who is the older of two people than to determine the person's actual age. Given a reference database with samples of known ages and a dataset to label, we can transfer reliable annotations from the former to the latter via human-in-the-loop comparisons. We show an effective way to transform such comparisons to posterior via fully-connected and SoftMax layers, so as to permit end-to-end training in a deep network. Thanks to the efficient and effective annotation approach, we collect a new large-scale facial age dataset, dubbed `MegaAge', which consists of 41,941 images. Data can be downloaded from our project page mmlab.ie.cuhk.edu.hk/projects/MegaAge and github.com/zyx2012/Age_estimation_BMVC2017. With the dataset, we train a network that jointly performs ordinal hyperplane classification and posterior distribution learning. Our approach achieves state-of-the-art results on popular benchmarks such as MORPH2, Adience, and the newly proposed MegaAge.Comment: To appear on BMVC 2017 (oral) revised versio
    corecore