498 research outputs found

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    Parameterized Algorithms for Queue Layouts

    Full text link
    An hh-queue layout of a graph GG consists of a linear order of its vertices and a partition of its edges into hh queues, such that no two independent edges of the same queue nest. The minimum hh such that GG admits an hh-queue layout is the queue number of GG. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph GG has queue number 11 and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of GG. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary hh.Comment: Appears in the Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD 2020

    Four Pages Are Indeed Necessary for Planar Graphs

    Get PDF
    An embedding of a graph in a book consists of a linear order of its vertices along the spine of the book and of an assignment of its edges to the pages of the book, so that no two edges on the same page cross. The book thickness of a graph is the minimum number of pages over all its book embeddings. Accordingly, the book thickness of a class of graphs is the maximum book thickness over all its members. In this paper, we address a long-standing open problem regarding the exact book thickness of the class of planar graphs, which previously was known to be either three or four. We settle this problem by demonstrating planar graphs that require four pages in any of their book embeddings, thus establishing that the book thickness of the class of planar graphs is four
    corecore