4 research outputs found

    Sonet Network Design Problems

    Full text link
    This paper presents a new method and a constraint-based objective function to solve two problems related to the design of optical telecommunication networks, namely the Synchronous Optical Network Ring Assignment Problem (SRAP) and the Intra-ring Synchronous Optical Network Design Problem (IDP). These network topology problems can be represented as a graph partitioning with capacity constraints as shown in previous works. We present here a new objective function and a new local search algorithm to solve these problems. Experiments conducted in Comet allow us to compare our method to previous ones and show that we obtain better results

    Comparing Metaheuristic Algorithms for Sonet Network Design Problems

    No full text
    This paper considers two problems that arise in the design of optical telecommunication networks when a ring-based topology is adopted, namely the SONET Ring Assignment Problem and the Intraring Synchronous Optical Network Design Problem. We show that these two network topology problems correspond to graph partitioning problems with capacity constraints: the first is a vertex partitioning problem, while the latter is an edge partitioning problem. We consider solution methods for both problems, based on metaheuristic algorithms. We first describe variable objective functions that depend on the transition from one solution to a neighboring one, then we apply several diversification and intensification techniques including Path Relinking, eXploring Tabu Search and Scatter Search. Finally we propose a diversification method based on the use of multiple neighborhoods. A set of extensive computational results is used to compare the behaviour of the proposed methods and objective functions

    Comparing metaheuristic algorithms for Sonet network design problems

    No full text
    This paper considers two problems that arise in the design of optical telecommunication networks when a ring-based topology is adopted, namely the SONET Ring Assignment Problem and the Intraring Synchronous Optical Network Design Problem. We show that these two network topology problems correspond to graph partitioning problems with capacity constraints: the first is a vertex partitioning problem, while the latter is an edge partitioning problem. We consider solution methods for both problems, based on metaheuristic algorithms. We first describe variable objective functions that depend on the transition from one solution to a neighboring one, then we apply several diversification and intensification techniques including Path Relinking, eXploring Tabu Search and Scatter Search. Finally we propose a diversification method based on the use of multiple neighborhoods. A set of extensive computational results is used to compare the behaviour of the proposed methods and objective functions
    corecore