2,146 research outputs found

    Matching concepts across HOL libraries

    Full text link
    Many proof assistant libraries contain formalizations of the same mathematical concepts. The concepts are often introduced (defined) in different ways, but the properties that they have, and are in turn formalized, are the same. For the basic concepts, like natural numbers, matching them between libraries is often straightforward, because of mathematical naming conventions. However, for more advanced concepts, finding similar formalizations in different libraries is a non-trivial task even for an expert. In this paper we investigate automatic discovery of similar concepts across libraries of proof assistants. We propose an approach for normalizing properties of concepts in formal libraries and a number of similarity measures. We evaluate the approach on HOL based proof assistants HOL4, HOL Light and Isabelle/HOL, discovering 398 pairs of isomorphic constants and types

    TLA+ Proofs

    Get PDF
    TLA+ is a specification language based on standard set theory and temporal logic that has constructs for hierarchical proofs. We describe how to write TLA+ proofs and check them with TLAPS, the TLA+ Proof System. We use Peterson's mutual exclusion algorithm as a simple example to describe the features of TLAPS and show how it and the Toolbox (an IDE for TLA+) help users to manage large, complex proofs.Comment: A shorter version of this article appeared in the proceedings of the conference Formal Methods 2012 (FM 2012, Paris, France, Springer LNCS 7436, pp. 147-154

    Advanced Proof Viewing in ProofTool

    Full text link
    Sequent calculus is widely used for formalizing proofs. However, due to the proliferation of data, understanding the proofs of even simple mathematical arguments soon becomes impossible. Graphical user interfaces help in this matter, but since they normally utilize Gentzen's original notation, some of the problems persist. In this paper, we introduce a number of criteria for proof visualization which we have found out to be crucial for analyzing proofs. We then evaluate recent developments in tree visualization with regard to these criteria and propose the Sunburst Tree layout as a complement to the traditional tree structure. This layout constructs inferences as concentric circle arcs around the root inference, allowing the user to focus on the proof's structural content. Finally, we describe its integration into ProofTool and explain how it interacts with the Gentzen layout.Comment: In Proceedings UITP 2014, arXiv:1410.785

    Towards Ranking Geometric Automated Theorem Provers

    Full text link
    The field of geometric automated theorem provers has a long and rich history, from the early AI approaches of the 1960s, synthetic provers, to today algebraic and synthetic provers. The geometry automated deduction area differs from other areas by the strong connection between the axiomatic theories and its standard models. In many cases the geometric constructions are used to establish the theorems' statements, geometric constructions are, in some provers, used to conduct the proof, used as counter-examples to close some branches of the automatic proof. Synthetic geometry proofs are done using geometric properties, proofs that can have a visual counterpart in the supporting geometric construction. With the growing use of geometry automatic deduction tools as applications in other areas, e.g. in education, the need to evaluate them, using different criteria, is felt. Establishing a ranking among geometric automated theorem provers will be useful for the improvement of the current methods/implementations. Improvements could concern wider scope, better efficiency, proof readability and proof reliability. To achieve the goal of being able to compare geometric automated theorem provers a common test bench is needed: a common language to describe the geometric problems; a comprehensive repository of geometric problems and a set of quality measures.Comment: In Proceedings ThEdu'18, arXiv:1903.1240
    corecore