5 research outputs found

    Radiometric Correction of Observations from Microwave Humidity Sounders

    Get PDF
    The Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) are total power microwave radiometers operating at frequencies near the water vapor absorption line at 183 GHz. The measurements of these instruments are crucial for deriving a variety of climate and hydrological products such as water vapor, precipitation, and ice cloud parameters. However, these measurements are subject to several errors that can be classified into radiometric and geometric errors. The aim of this study is to quantify and correct the radiometric errors in these observations through intercalibration. Since the bias in the calibration of microwave instruments changes with scene temperature, a two-point intercalibration correction scheme was developed based on averages of measurements over the tropical oceans and nighttime polar regions. The intercalibration coefficients were calculated on a monthly basis using measurements averaged over each specified region and each orbit, then interpolated to estimate the daily coefficients. Since AMSU-B and MHS channels operate at different frequencies and polarizations, the measurements from the two instruments were not intercalibrated. Because of the negligible diurnal cycle of both temperature and humidity fields over the tropical oceans, the satellites with the most stable time series of brightness temperatures over the tropical oceans (NOAA-17 for AMSU-B and NOAA-18 for MHS) were selected as the reference satellites and other similar instruments were intercalibrated with respect to the reference instrument. The results show that channels 1, 3, 4, and 5 of AMSU-B on board NOAA-16 and channels 1 and 4 of AMSU-B on board NOAA-15 show a large drift over the period of operation. The MHS measurements from instruments on board NOAA-18, NOAA-19, and MetOp-A are generally consistent with each other. Because of the lack of reference measurements, radiometric correction of microwave instruments remain a challenge, as the intercalibration of these instruments largely depends on the stability of the reference instrument

    An Emissive Antenna Correction for The Tropical Rainfall Measuring Mission Microwave Imager (TMI)

    Get PDF
    This dissertation deals with the radiometric calibration of a satellite microwave radiometer known as the TRMM Microwave Imager (TMI), which operated on NASA’s Tropical Rainfall Measuring Mission (TRMM). This multi-frequency, conical-scanning, passive microwave, remote sensor measures the earth’s blackbody emissions (brightness temperature, Tb) from a low earth orbit and covers the tropics (±35° latitude). The original scientific objective for TRMM’s 3-year mission was to measure the statistics of rainfall in the tropics. However, the mission was quite successful, and TRMM was extended for greater than 17 years to provide a long-term satellite rain measurements, which has contributed significantly to the study of global climate change. A significant part of the extended TRMM mission was the establishment of a constellation of satellite radiometer that provide frequent global rainfall measurements that enable severe storm warnings for operational hazard forecast by the international weather community. TRMM played a key role by serving as the radiometric calibration standard for the TRMM constellation microwave radiometers. The objective of this dissertation is to improve the radiometric calibration of TMI and to provide to NASA a new robust, physics-based algorithm for the legacy data processing of the TRMM brightness temperature data product, which will be called TMI 1B11 V8. Moreover, the results of this new procedure have been validated using the double difference techniques with the Global Precipitation Mission Microwave Imager (GMI), which is the replacement satellite mission to TRMM

    On-orbit Inter-satellite Radiometric Calibration of Cross-track Scanning Microwave Radiometers

    Get PDF
    This dissertation concerns the development of an improved algorithm for the inter-satellite radiometric calibration (XCAL) for cross track scanning microwave radiometers in support of NASA\u27s Global Precipitation Mission (GPM). This research extends previous XCAL work to assess the robustness of the CFRSL double difference technique for sounder X-CAL. In this work, using a two-year of observations, we present a statistical analysis of radiometric biases performed over time and viewing geometry. In theory, it is possible to apply the same X-CAL procedure developed for conical-scanning radiometers to cross-track scanners; however the implementation is generally more tedious. For example, with the cross-track scan angle, there is a strong response in the observed Tb due to changes in the atmosphere slant path and surface emissivity with the Earth incidence angle. For ocean scenes this is trivial; however for land scenes there is imperfect knowledge of polarized emissivity. However, for the sounder channels the surface emissivity is not the dominant component of top-of-the-atmosphere Tb, which is a mitigating factor. Also, cross-track scanners introduce changes in the radiometer antenna observed polarization with scan angle. The resulting observation is a mixture of un-polarized atmospheric emissions and vertical and horizontal polarized surface emissions. The degree of polarization mixing is known from geometry; however, reasonable estimates of the surface emissivity are required, which complicate over land comparisons. Finally, the IFOV size monotonically increases over the cross-track scan. Thus, when inter-comparing cross-track scanning radiometers, it will be necessary to carefully consider these effects when performing the double difference procedure

    Spaceborne Microwave Radiometry: Calibration, Intercalibration, and Science Applications.

    Full text link
    Spaceborne microwave radiometry is the backbone for assimilation into numerical weather forecasts and provides important information for Earth and environment science. The extensive radiometric data must go through the process of calibration and intercalibration prior to science application. This work deals with the entire process by providing systematic methods and addressing critical challenges. These methods have been applied to NASA and JAXA’s Global Precipitation Measurement (GPM) mission and many other radiometers to make important contributions and to solve long-standing issues with coastal science applications. Specifically, it addresses four important challenges: 1) improving cold calibration with scan dependent characterization; 2) reducing the uncertainty of warm calibration; 3) deriving calibration dependence across the full range of brightness temperatures with both cold and warm calibration; and 4) investigating calibration variability and dependence on geophysical parameters. One critical challenge in science applications of radiometer data is that coastal science products from radiometers have previously been largely unavailable due to land contamination. We therefore develop methods to correct for land contamination and derive coastal science products. This thesis addresses these challenges by developing their solutions and then applying them to the GPM mission and its radiometer constellation.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120728/1/johnxun_1.pd

    Microwave Radiometer Inter-Calibration: Algorithm Development and Application.

    Full text link
    Microwave radiometer inter-calibration is an essential component of any effort to combine measurements from two or more radiometers into one dataset for scientific studies. One spaceborne instrument in low Earth orbit is not sufficient to perform long-term climate studies or to provide measurements more than twice per day at any given location on Earth. Measurements from several radiometers are necessary for analyses over extended temporal and spatial ranges. In order to combine the measurements, the radiometers need to be inter-calibrated due to the instruments having unique instrument designs and calibrations. Inter-calibration ensures that consistent scientific parameters are retrieved from the radiometers. The development of a cold end inter-calibration algorithm is presented. The algorithm makes use of vicarious cold calibration, along with the double difference method, to calculate calibration differences between radiometers. The performance of the algorithm is characterized using data from current conical scanning microwave radiometers. The vicarious cold calibration double difference is able to sufficiently account for design differences between two radiometers including frequency, earth incidence angle, and orbital characteristics. An estimate of the uncertainty in the inter-calibration algorithm is given as a result of potential errors in the geophysical inputs and improper accounting of seasonal and diurnal variability. The vicarious cold calibration double difference method is shown to be a valid and accurate inter-calibration algorithm. Results are compared with calibration differences calculated using alternate algorithms and sufficient agreement is attained. Inter-calibration is shown to be necessary for achieving consistency in retrieved scientific parameters by using the vicarious cold calibration double difference method to inter-calibrate two radiometers that are then used to derive rain accumulations. Inter-calibration results in a significant improvement in the rain accumulation agreement between the radiometers. This validates inter-calibration algorithm development and shows that it has a positive impact on achieving consistency in scientific parameter retrievals.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107078/1/rakro_1.pd
    corecore