2 research outputs found

    Theoretical Comparison of the Excited Electronic States of the Linear Uranyl (UO\u3csub\u3e2\u3c/sub\u3e\u3csup\u3e2+\u3c/sup\u3e) and Tetrahedral Uranate (UO\u3csub\u3e4\u3c/sub\u3e\u3csup\u3e2-\u3c/sup\u3e) Ions Using Relativistic Computational Methods

    Get PDF
    This thesis examines the ground and excited electronic states of the uranyl (UO2+) and uranate (UO42-) ions using Hartree-Fock self-consistent field (HF SCF), multi-configuration self-consistent field (MCSCF) and multi-reference single and double excitation configuration interaction (MR- CISD) methods. The MR-CISD SD calculation included spin-orbit operators. Molecular geometries were obtained from self-consistent field (SCF ) second-order perturbation theory (MP2), and density functional theory (DFT) geometry optimizations using the NWChem 4.01 massively parallel ab initio software package. COLUMBUS version 5.8 was used to perform in-depth analysis on the HF SCF MCSCF and MR-CISD potential energy surfaces. Excited state calculations for the uranyl ion were performed using both a large- and small-core relativistic effective core potential (RECP) in order to calibrate the method. This calibration included comparison to previous theoretical and experimental work on the uranyl ion. Uranate excited states were performed using the small-core RECP as well as the methodology developed using the uranyl ion

    The effect of siderophores on the aqueous chemistry of uranium VI: a combined experimental and computational approach

    Get PDF
    Understanding aqueous uranium VI (UVI) chemistry in alkaline environments (pH >10) is crucial as radioactive waste can be stored and disposed in these conditions. Naturally occurring organic molecules can interact with UVI, modifying its aqueous chemistry and subsequent groundwater facilitated transport. The aim of this research project is to characterise the effect of the (tris)hydroxamate siderophore desferrioxamine B (DFOB) on UVI aqueous chemistry in alkaline solutions. Initially, the physico-chemical properties of UVI precipitates were characterised in solutions containing 42 µM UVI and 0.1 M NaCl. UVI formed 640 ± 111 and 837 ± 142 nm diameter Na6U7O24 precipitates at pH 10.5 and 11.5 respectively. These were usually physically immobilised in quartz sand columns. When ≥130 µM DFOB was simultaneously added with UVI to pH 11.5, 0.1 M NaCl solutions, UVI quantitatively passes through 0.2 µm filter membranes. This could be due to the formation of an aqueous UVI-DFOB complex as observed below pH 10. To further explore complex formation, a density functional theory protocol was established. The protocol predicts the stability constants (log β) of UVI-organic ligand complexes with root mean square deviation of 1.19 log β units after calibration against experimental data collected in acidic solutions. The relative stability series for UVI complexes with key siderophore functional groups calculated using the fitting equation is: α-hydroxycarboxylate bound via the α-hydroxy and carboxylate groups (log β110 = 17.08), α-hydroxyimidazolate (log β110 = 16.55), catecholate (log β110 = 16.43), hydroxamate (log β110 = 9.00), hydroxy-phenyloxazolonate (log β110 = 8.43) and α-aminocarboxylate (log β110 = 4.73). Finally the DFT protocol was adapted so that the stability of UVI-hydroxamate complexes can be approximated at pH 11.5. This suggests DFOB complexes in a monodentate fashion via one hydroxamate group. These results highlight the significant effect siderophores can play on aqueous UVI chemistry.Open Acces
    corecore