13 research outputs found

    Phytochemical Omics in Medicinal Plants

    Get PDF
    Medicinal plants are used to treat diseases and provide health benefits, and their applications are increasing around the world. A huge array of phytochemicals have been identified from medicinal plants, belonging to carotenoids, flavonoids, lignans, and phenolic acids, and so on, with a wide range of biological activities. In order to explore our knowledge of phytochemicals with the assistance of modern molecular tools and high-throughput technologies, this book collects recent innovative original research and review articles on subtopics of mechanistic insights into bioactivities, treatment of diseases, profiling, extraction and identification, and biotechnology

    Theme Issue Honoring Prof. Dr. Ludger Wessjohann’s 60th Birthday: Natural Products in Modern Drug Discovery

    Get PDF
    Nature continuously produces biologically useful molecules and provides humankind with life-saving drugs or therapies. Natural products (NPs) offer a vast, unique and fascinating chemical diversity and these molecules have evolved for optimal interactions with biological macromolecules. Moreover, natural products feature pharmacologically active pharmacophores which are pharmaceutically validated starting points for the development of new lead compounds. Over half of all approved (from 1981 to 2014) small-molecule drugs derived from NPs, including unaltered NPs, NPs synthetic derivatives and synthetic natural mimics, originated from a NPs pharmacophore or template. According to the FDA, NPs and their derivatives represent over one-third of all FDA-approved new drugs, in particular for anticancer/antibiotic lead compounds, which are remarkably enriched with NPs

    Isolation and Identification of Bioactive Secondary Metabolites

    Get PDF
    The health benefits of food, plants, fruits, and seaweeds stem from the biological activities of their constituents—namely, secondary metabolites. The study of secondary metabolites and their potential to treat and/or prevent a number of diseases has become a research topic of growing interest for biologists, pharmacists, and chemists. Notably, in order to propose a compound as a potential new drug with pharmacological effects, the chemical structure of this compound and its biological activity against a given target must be well established. The Special Issue, “Isolation and Identification of Bioactive Secondary Metabolites”, considers species beyond their nutritional value and identifies instances of wider and more efficient use, thereby contributing to a more sustainable management of natural resources. The fifteen articles published in this Special Issue reflect the latest research trends, and consider the isolation, identification, and assessment of the beneficial effects of secondary metabolites from both edible and inedible species. Thus, these contributions collectively demonstrate that these compounds, and their plants of origin, should be valued beyond their nutritional benefits

    Cholinesterase Research

    Get PDF
    This collection of 10 papers includes original as well as review articles focused on the cholinesterase structural aspects, drug design and development of novel cholinesterase ligands, but also contains papers focused on the natural compounds and their effect on the cholinergic system and unexplored effects of donepezil

    Marine Drug Research in China: Selected Papers from the 15-NASMD Conference

    Get PDF
    The Book covers this whole field, from the discovery of structurally new and bioactive natural products (including biomacromolecules), from marine macro-/micro-organisms, to the pharmacodynamics, pharmacokinetics, metabolisms, and mechanisms of marine-derived lead compounds, both in vitro and in vivo, along with the synthesis and/or structural optimization of marine-derived lead compounds and their structure–activity relationships. Taken together, this Special Issue reprint not only provides inspiration for the discovery of marine-derived novel bioactive compounds, but also sheds light on the further research and development of marine candidate drugs

    53rd National Meeting of the Italian Society of Biochemistryand Molecular Biology (SIB)andNational Meeting of Chemistry of Biological Systems – Italian Chemical Society (SCI - Section CSB)

    Get PDF
    The 53rd National Congress of the Italian Society of Biochemistry and Molecular Biology (SIB), which will be held in Riccione from 23 to 26 September, is characterised by the elevated scientific level and interdisciplinary interest of the numerous sessions in which it is organised. The Scientific Programme comprises three joint Symposia of the SIB and the Chemistry of Biological Systems section of the Italian Chemistry Society (SCI) on Molecular Systems Biology, Chemistry of Nucleic Acids, Protein and Drug Structure, and Environmental Biotechnology. These Symposia address groundbreaking arguments, making the joint interest of the two societies particularly fascinating; the joint organisation of these events in fact signals the shared intention to proceed along the path of scientific exchange. The topics of the other sessions have been chosen by the Scientific Committee on the basis of their scientific relevance and topicality, with particular attention paid to the selection of the speakers. The SIB sessions will range from Signal Transduction and Biomolecular Targets, Protein Misfolding and its Relationship with Disease, Emerging Techniques in Biochemistry, Gene Silencing, Redox Signalling and Oxidative Stress, Lipids in Cell Communication and Signal Transduction, Mitochondrial Function and Dysfunction

    53rd National Meeting of the Italian Society of Biochemistry and Molecular Biology (SIB) and National Meeting of Chemistry of Biological Systems – Italian Chemical Society (SCI - Section CSB)

    Get PDF
    Il 53° Congresso Nazionale della Società Italiana di Biochimica e Biologia Molecolare che si tiene a Riccione dal 23 al 26 Settembre si distingue per l'alto livello scientifico e l'interesse interdisciplinare delle numerose sessioni nelle quali è strutturato. Il Programma scientifico vede tre Simposi congiunti della SIB con la Sezione della Chimica dei Sistemi Biologici della Società Italiana di Chimica (SCI) su Molecular Systems Biology, Chemistry of Nucleic Acids, Protein and Drug Structure, Environmental Biotechnology. Questi Simposi, riguardano argomenti di avanguardia per i quali fa piacere l'interesse condiviso delle due Società, che per la prima volta organizzano dei Simposi congiunti a significare l'intento di procedere insieme negli scambi scientifici. Gli argomenti delle altre sessioni sono stati scelti dal comitato scientifico in base alla loro rilevanza e attualità scientifica, con particolare cura nella individuazione dei relatori. Le sessioni SIB spazieranno da Signal Transduction and Biomolecular Targets, Protein Misfolding and its Relationship with Diseases, Emerging Techniques in Biochemistry, Gene Silencing, Redox Signalling and Oxidative Stress, Lipids in Cell Communication and Signal Transduction, Mitochondrial Function and Dysfunction

    Anticancer Agents

    Get PDF
    This book is a printed edition of the Special Issue entitled “Anticancer Agents: Design, Synthesis and Evaluation” that was published in Molecules. Two review articles and thirty research papers are included in the Special Issue. Three second-generation androgen receptor antagonists that have been approved by the U.S. FDA for the treatment of prostate cancer have been reviewed. Identification of mimics of protein partners as protein-protein interaction inhibitors via virtual screening has been summarized and discussed. Anticancer agents targeting various protein targets, including IGF-1R, Src, protein kinase, aromatase, HDAC, PARP, Toll-Like receptor, c-Met, PI3Kdelta, topoisomerase II, p53, and indoleamine 2,3-dioxygenase, have been explored. The analogs of three well-known tubulin-interacting natural products, paclitaxel, zampanolide, and colchicine, have been designed, synthesized, and evaluated. Several anticancer agents representing diverse chemical scaffolds were assessed in different kinds of cancer cell models. The capability of some anticancer agents to overcome the resistance to currently available drugs was also studied. In addition to looking into the in vitro ability of the anticancer agents to inhibit cancer cell proliferation, apoptosis, and cell cycle, in vivo antitumor efficacy in animal models and DFT were also investigated in some papers

    Non-covalent interactions in organotin(IV) derivatives of 5,7-ditertbutyl- and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine as recognition motifs in crystalline self- assembly and their in vitro antistaphylococcal activity

    Get PDF
    Non-covalent interactions are known to play a key role in biological compounds due to their stabilization of the tertiary and quaternary structure of proteins [1]. Ligands similar to purine rings, such as triazolo pyrimidine ones, are very versatile in their interactions with metals and can act as model systems for natural bio-inorganic compounds [2]. A considerable series (twelve novel compounds are reported) of 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) and 5,7-diphenyl- 1,2,4-triazolo[1,5-a]pyrimidine (dptp) were synthesized and investigated by FT-IR and 119Sn M\uf6ssbauer in the solid state and by 1H and 13C NMR spectroscopy, in solution [3]. The X-ray crystal and molecular structures of Et2SnCl2(dbtp)2 and Ph2SnCl2(EtOH)2(dptp)2 were described, in this latter pyrimidine molecules are not directly bound to the metal center but strictly H-bonded, through N(3), to the -OH group of the ethanol moieties. The network of hydrogen bonding and aromatic interactions involving pyrimidine and phenyl rings in both complexes drives their self-assembly. Noncovalent interactions involving aromatic rings are key processes in both chemical and biological recognition, contributing to overall complex stability and forming recognition motifs. It is noteworthy that in Ph2SnCl2(EtOH)2(dptp)2 \u3c0\u2013\u3c0 stacking interactions between pairs of antiparallel triazolopyrimidine rings mimick basepair interactions physiologically occurring in DNA (Fig.1). M\uf6ssbauer spectra suggest for Et2SnCl2(dbtp)2 a distorted octahedral structure, with C-Sn-C bond angles lower than 180\ub0. The estimated angle for Et2SnCl2(dbtp)2 is virtually identical to that determined by X-ray diffraction. Ph2SnCl2(EtOH)2(dptp)2 is characterized by an essentially linear C-Sn-C fragment according to the X-ray all-trans structure. The compounds were screened for their in vitro antibacterial activity on a group of reference staphylococcal strains susceptible or resistant to methicillin and against two reference Gramnegative pathogens [4] . We tested the biological activity of all the specimen against a group of staphylococcal reference strains (S. aureus ATCC 25923, S. aureus ATCC 29213, methicillin resistant S. aureus 43866 and S. epidermidis RP62A) along with Gram-negative pathogens (P. aeruginosa ATCC9027 and E. coli ATCC25922). Ph2SnCl2(EtOH)2(dptp)2 showed good antibacterial activity with a MIC value of 5 \u3bcg mL-1 against S. aureus ATCC29213 and also resulted active against methicillin resistant S. epidermidis RP62A
    corecore