1,878 research outputs found

    Scheduling Policies in Time and Frequency Domains for LTE Downlink Channel: A Performance Comparison

    Get PDF
    A key feature of the Long-Term Evolution (LTE) system is that the packet scheduler can make use of the channel quality information (CQI), which is periodically reported by user equipment either in an aggregate form for the whole downlink channel or distinguished for each available subchannel. This mechanism allows for wide discretion in resource allocation, thus promoting the flourishing of several scheduling algorithms, with different purposes. It is therefore of great interest to compare the performance of such algorithms under different scenarios. Here, we carry out a thorough performance analysis of different scheduling algorithms for saturated User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) traffic sources, as well as consider both the time- and frequency-domain versions of the schedulers and for both flat and frequency-selective channels. The analysis makes it possible to appreciate the difference among the scheduling algorithms and to assess the performance gain, in terms of cell capacity, users' fairness, and packet service time, obtained by exploiting the richer, but heavier, information carried by subchannel CQI. An important part of this analysis is a throughput guarantee scheduler, which we propose in this paper. The analysis reveals that the proposed scheduler provides a good tradeoff between cell capacity and fairness both for TCP and UDP traffic sources

    Comparative Analysis of Downlink Packet Scheduling Algorithms in 3GPP LTE Networks

    Full text link
    Long Term Evolution (LTE) mobile network aims to support high speed network services even in highmobility scenarios. To achieve this goal, LTE adopts some advanced features in Radio Resource Management (RRM) procedures. Among them, LTE packet scheduling plays a fundamental role in maximising system performance. In this paper, a comparative analysis on the performances of Proportional Fair (PF), Exponential/Proportional Fair (EXP/PF), Exponential (EXP) Rule, MaximumLargest Weighted Delay First (M-LWDF), Logarithmic (LOG) Rule and Frame Level Scheduler (FLS) LTE downlink packet scheduling algorithms is reported. Performance is evaluated in single cell with interference environment while increasing user number and user speed. Results show that for multimedia flow, FLS scheme outperforms other five schemes in terms of packet delay, packet loss ratio, and average throughput, whereas for best-effort flow, EXP-PF scheme shows better average throughput performance on average as compared with other algorithms being considered herein

    Comparative Analysis of Scheduling Algorithms Performance in a Long Term Evolution Network

    Get PDF
    The advancement in cellular communications has enhanced the special attention given to the study of resource allocation schemes. This study is to enhance communications to attain efficiency and thereby offers fairness to all users in the face of congestion experienced anytime a new product is rolled out. The comparative analysis was done on the performance of Enhanced Proportional Fair, Qos-Aware Proportional Fair and Logarithmic rule scheduling algorithms in Long Term Evolution in this work. These algorithms were simulated using LTE system toolbox in MATLAB and their performances were compared using Throughput, Packet delay and Packet Loss Ratio. The results showed Qos-Aware Proportional Fair has a better performance in all the metrics used for the evaluation
    corecore