1,384 research outputs found

    Peer-to-peer:is deviant behavior the norm on P2P file-sharing networks?

    Get PDF
    P2P file-sharing networks such as Kazaa, eDonkey, and Limewire boast millions of users. Because of scalability concerns and legal issues, such networks are moving away from the semicentralized approach that Napster typifies toward more scalable and anonymous decentralized P2P architectures. Because they lack any central authority, these networks provide a new, interesting context for the expression of human social behavior. However, the activities of P2P community members are sometimes at odds with what real-world authorities consider acceptable. One example is the use of P2P networks to distribute illegal pornography. To gauge the form and extent of P2P-based sharing of illegal pornography, we analyzed pornography-related resource-discovery traffic in the Gnutella P2P network. We found that a small yet significant proportion of Gnutella activity relates to illegal pornography: for example, 1.6 percent of searches and 2.4 percent of responses are for this type of material. But does this imply that such activity is widespread in the file-sharing population? On the contrary, our results show that a small yet particularly active subcommunity of users searches for and distributes illegal pornography, but it isn't a behavioral norm

    Comparative Analysis of P2P Architectures for Energy Trading and Sharing

    Get PDF
    Rising awareness and emergence of smart technologies have inspired new thinking in energy system management. Whilst integration of distributed energy resources in micro-grids (MGs) has become the technique of choice for consumers to generate their energy, it also provides a unique opportunity to explore energy trading and sharing amongst them. This paper investigates peer-to-peer (P2P) communication architectures for prosumers’ energy trading and sharing. The performances of common P2P protocols are evaluated under the stringent communication requirements of energy networks defined in IEEE 1547.3-2007. Simulation results show that the structured P2P protocol exhibits a reliability of 99.997% in peer discovery and message delivery whilst the unstructured P2P protocol yields 98%, both of which are consistent with the requirements of MG applications. These two architectures exhibit high scalability with a latency of 0.5 s at a relatively low bandwidth consumption, thus, showing promising potential in their adoption for prosumer to prosumer communication

    Intelligent query processing in P2P networks: semantic issues and routing algorithms

    Get PDF
    P2P networks have become a commonly used way of disseminating content on the Internet. In this context, constructing efficient and distributed P2P routing algorithms for complex environments that include a huge number of distributed nodes with different computing and network capabilities is a major challenge. In the last years, query routing algorithms have evolved by taking into account different features (provenance, nodes' history, topic similarity, etc.). Such features are usually stored in auxiliary data structures (tables, matrices, etc.), which provide an extra knowledge engineering layer on top of the network, resulting in an added semantic value for specifying algorithms for efficient query routing. This article examines the main existing algorithms for query routing in unstructured P2P networks in which semantic aspects play a major role. A general comparative analysis is included, associated with a taxonomy of P2P networks based on their degree of decentralization and the different approaches adopted to exploit the available semantic aspects.Fil: Nicolini, Ana Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Lorenzetti, Carlos Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    A Secure and User Privacy-Preserving Searching Protocol for Peer-to-Peer Networks

    Get PDF
    File sharing peer-to-peer networks have become quite popular of late as a new paradigm for information exchange among large number of users in the Internet. However, these networks suffer from several problems such as fake content distribution, free riding, whitewashing, poor search scalability, lack of a robust trust model and absence of user privacy protection mechanism. In this paper, a secure and efficient searching scheme for peer-to-peer networks has been proposed that utilizes topology adaptation by constructing an overlay of trusted peers where the neighbors are selected based on their trust ratings and content similarities. While increasing the search efficiency by intelligently exploiting the formation of semantic community structures among the trustworthy peers, the scheme provides a highly reliable module for protecting the privacy of the users and data in the network. Simulation results have demonstrated that the proposed scheme provides efficient searching to good peers while penalizing the malicious peers by increasing their search times

    A Mini Review of Peer-to-Peer (P2P) for Vehicular Communication

    Get PDF
    In recent times, peer-to-peer (P2P) has evolved, where it leverages the capability to scale compared to server-based networks. Consequently, P2P has appeared to be the future distributed systems in emerging several applications. P2P is actually a disruptive technology for setting up applications that scale to numerous concurrent individuals. Thus, in a P2P distributed system, individuals become themselves as peers through contributing, sharing, and managing the resources in a network. In this paper, P2P for vehicular communication is explored. A comprehensive of the functioning concept of both P2P along with vehicular communication is examined. In addition, the advantages are furthermore conversed for a far better understanding on the implementation

    A NOVEL LINEAR DIOPHANTINE EQUATION-BAESD LOW DIAMETER STRUCTURED PEER-TO-PEER NETWORK

    Get PDF
    This research focuses on introducing a novel concept to design a scalable, hierarchical interest-based overlay Peer-to-Peer (P2P) system. We have used Linear Diophantine Equation (LDE) as the mathematical base to realize the architecture. Note that all existing structured approaches use Distributed Hash Tables (DHT) and Secure Hash Algorithm (SHA) to realize their architectures. Use of LDE in designing P2P architecture is a completely new idea; it does not exist in the literature to the best of our knowledge. We have shown how the proposed LDE-based architecture outperforms some of the most well established existing architecture. We have proposed multiple effective data query algorithms considering different circumstances, and their time complexities are bounded by (2+ r/2) only; r is the number of distinct resources. Our alternative lookup scheme needs only constant number of overlay hops and constant number of message exchanges that can outperform DHT-based P2P systems. Moreover, in our architecture, peers are able to possess multiple distinct resources. A convincing solution to handle the problem of churn has been offered. We have shown that our presented approach performs lookup queries efficiently and consistently even in presence of churn. In addition, we have shown that our design is resilient to fault tolerance in the event of peers crashing and leaving. Furthermore, we have proposed two algorithms to response to one of the principal requests of P2P applications’ users, which is to preserve the anonymity and security of the resource requester and the responder while providing the same light-weighted data lookup

    Exploiting semantic locality to improve peer-to-peer search mechanisms

    Get PDF
    A Peer-to-Peer(P2P) network is the most popular technology in file sharing today. With the advent of various commercial and non-commercial applications like KaZaA, Gnutella, a P2P network has exercised its growth and popularity to the maximum. Every node (peer) in a P2P network acts as both a client and a server for other peers. A search in P2P network is performed as a query relayed between peers until the peer that contains the searched data is found. Huge data size, complex management requirements, dynamic network conditions and distributed systems are some of the difficult challenges a P2P system faces while performing a search. Moreover, a blind and uninformed search leads to performance degradation and wastage of resources. To address these weaknesses, techniques like Distributed Hash Table (DHT) has been proposed to place a tight constraint on the node placement. However, it does not considers semantic significance of the data. We propose a new peer to peer search protocol that identities locality in a P2P network to mitigate the complexity in data searching. Locality is a logical semantic categorization of a group of peers sharing common data. With the help of locality information, our search model offers more informed and intelligent search for different queries. To evaluate the effectiveness of our model we propose a new P2P search protocol - LocalChord. LocalChord relies on Chord and demonstrates potential of our proposed locality scheme by re-modelling Chord as a Chord of sub-chords

    Relating Query Popularity and File Replication in the Gnutella Peer-to-Peer Network

    Get PDF
    In this paper, we characterize the user behavior in a peer-to-peer (P2P) file sharing network. Our characterization is based on the results of an extensive passive measurement study of the messages exchanged in the Gnutella P2P file sharing system. Using the data recorded during this measurement study, we analyze which queries a user issues and which files a user shares. The investigation of users queries leads to the characterization of query popularity. Furthermore, the analysis of the files shared by the users leads to a characterization of file replication. As major contribution, we relate query popularity and file replication by an analytical formula characterizing the matching of files to queries. The analytical formula defines a matching probability for each pair of query and file, which depends on the rank of the query with respect query popularity, but is independent of the rank of the file with respect to file replication. We validate this model by conducting a detailed simulation study of a Gnutella-style overlay network and comparing simulation results to the results obtained from the measurement
    corecore