504 research outputs found

    Open-access silicon photonics: current status and emerging initiatives

    Get PDF
    Silicon photonics is widely acknowledged as a game-changing technology driven by the needs of datacom and telecom. Silicon photonics builds on highly capital-intensive manufacturing infrastructure, and mature open-access silicon photonics platforms are translating the technology from research fabs to industrial manufacturing levels. To meet the current market demands for silicon photonics manufacturing, a variety of open-access platforms is offered by CMOS pilot lines, R&D institutes, and commercial foundries. This paper presents an overview of existing and upcoming commercial and noncommercial open-access silicon photonics technology platforms. We also discuss the diversity in these open-access platforms and their key differentiators

    Integrated Photonics and Application-Specific Design on a Massive Open Online Course Platform

    Get PDF
    Silicon-based photonics is mobilizing into a manufacturing industry with specialized integrated circuit design requirements for applications in low power cloud computing, high speed wireless, smart sensing, and augmented imaging. The AIM Photonics Manufacturing USA Institute, which operates the world’s most advanced 300mm semiconductor research fab, has co-developed a Process Design Kit (PDK) in fabless circuit design for these expanding digital and analog applications; however, there currently isn’t available an in-depth curriculum to train engineers (academia, industry) in the AIM PDK process and Electronic Photonic Design Automation (EPDA) software. AIM Photonics Academy, an education initiative of AIM Photonics based at MIT, has collaborated with faculty to create three online MOOC edX courses that (1) introduce integrated photonics devices, and applications performance needs and metrics; and (2) train into the AIM PDK and specialized EPDA tools in a six week design project to lay out an application-specific photonic transceiver. The courses are structured around asynchronous video lectures and exploratory design problems that involve Python and Matlab-based first-principles calculations (systems modeling) or advanced EPDA tools (circuit design and layout). The online MOOC courses can optionally form a tandem blended learning component with two AIM Photonics Academy on-site training programs: the annual AIM Summer Academy one-week intensive program (held every July at MIT), or a photonic integrated circuit testing workshop (the first workshop is planned for fall 2019). These courses are a cornerstone effort at AIM to found and support a specialized cohort community of future integrated photonics designers

    Graphene-based wireless agile interconnects for massive heterogeneous multi-chip processors

    Get PDF
    The main design principles in computer architecture have recently shifted from a monolithic scaling-driven approach to the development of heterogeneous architectures that tightly co-integrate multiple specialized processor and memory chiplets. In such data-hungry multi-chip architectures, current Networks-in-Package (NiPs) may not be enough to cater to their heterogeneous and fast-changing communication demands. This position article makes the case for wireless in-package networking as the enabler of efficient and versatile wired-wireless interconnect fabrics for massive heterogeneous processors. To that end, the use of graphene-based antennas and transceivers with unique frequency-beam reconfigurability in the terahertz band is proposed. The feasibility of such a wireless vision and the main research challenges toward its realization are analyzed from the technological, communications, and computer architecture perspectives.This publication is part of the Spanish I+D+i project TRAINER-A (ref. PID2020-118011GB-C21), funded by MCIN/AEI/10.13039/501100011033. This work has been also supported by the European Commission under H2020 grants WiPLASH (GA 863337), 2D-EPL (GA 952792), and Graphene Flagship (GA 881603); the FLAGERA framework under grant TUGRACO (HA 3022/9-1, LE 2440/3-1), the European Research Council under grants WINC (GA 101042080), COMPUSAPIEN (GA 725657), and PROJESTOR (GA 682675), the German Ministry of Education and Research under grant GIMMIK (03XP0210) and the and the German Research Foundation under grant HIPEDI (WA 4139/1-1).Peer ReviewedArticle signat per 21 autors/es: Sergi Abadal, Robert Guirado, Hamidreza Taghvaee, and Akshay Jain are with the Universitat Politècnica de Catalunya, Spain; Elana Pereira de Santana and Peter Haring Bolívar are with the University of Siegen, Germany; Mohamed Saeed, Renato Negra, Kun-Ta Wang, and Max C. Lemme are with RWTH Aachen University, Germany. Zhenxing Wang, Kun-Ta Wang, and Max C. Lemme are also with AMO GmbH, Germany; Joshua Klein, Marina Zapater, Alexandre Levisse, and David Atienza are with the Swiss Federal Institute of Technology, Switzerland. Marina Zapater is also with the University of Applied Sciences and Arts Western Switzerland; Davide Rossi and Francesco Conti are with the University of Bologna,Italy; Martino Dazzi, Geethan Karunaratne, Irem Boybat, and Abu Sebastian are with IBM Research Europe, SwitzerlandPostprint (author's final draft

    Graphene-based Wireless Agile Interconnects for Massive Heterogeneous Multi-chip Processors

    Get PDF
    The main design principles in computer architecture have recently shifted from a monolithic scaling-driven approach to the development of heterogeneous architectures that tightly co-integrate multiple specialized processor and memory chiplets. In such data-hungry multi-chip architectures, current Networksin- Package (NiPs) may not be enough to cater to their heterogeneous and fast-changing communication demands. This position paper makes the case for wireless in-package networking as the enabler of efficient and versatile wired-wireless interconnect fabrics for massive heterogeneous processors. To that end, the use of graphene-based antennas and transceivers with unique frequency-beam reconfigurability in the terahertz band is proposed. The feasibility of such a wireless vision and the main research challenges towards its realization are analyzed from the technological, communications, and computer architecture perspectives
    • …
    corecore