66 research outputs found

    Compact Adaptively Secure ABE for NC1 from k-Lin

    Get PDF
    We present compact attribute-based encryption (ABE) schemes for NC1 that are adaptively secure under the k-Lin assumption with polynomial security loss. Our KP-ABE scheme achieves ciphertext size that is linear in the atttribute length and independent of the policy size even in the many-use setting, and we achieve an analogous efficiency guarantee for CP-ABE. This resolves the central open problem posed by Lewko and Waters (CRYPTO 2011). Previous adaptively secure constructions either impose an attribute ``one-use restriction\u27\u27 (or the ciphertext size grows with the policy size), or require q-type assumptions

    Compact NIZKs from Standard Assumptions on Bilinear Maps

    Get PDF
    A non-interactive zero-knowledge (NIZK) protocol enables a prover to convince a verifier of the truth of a statement without leaking any other information by sending a single message. The main focus of this work is on exploring short pairing-based NIZKs for all NP languages based on standard assumptions. In this regime, the seminal work of Groth, Ostrovsky, and Sahai (J.ACM\u2712) (GOS-NIZK) is still considered to be the state-of-the-art. Although fairly efficient, one drawback of GOS-NIZK is that the proof size is multiplicative in the circuit size computing the NP relation. That is, the proof size grows by O(∣C∣λ)O(|C|\lambda), where CC is the circuit for the NP relation and λ\lambda is the security parameter. By now, there have been numerous follow-up works focusing on shortening the proof size of pairing-based NIZKs, however, thus far, all works come at the cost of relying either on a non-standard knowledge-type assumption or a non-static qq-type assumption. Specifically, improving the proof size of the original GOS-NIZK under the same standard assumption has remained as an open problem. Our main result is a construction of a pairing-based NIZK for all of NP whose proof size is additive in ∣C∣|C|, that is, the proof size only grows by |C| +\poly(\lambda), based on the decisional linear (DLIN) assumption. Since the DLIN assumption is the same assumption underlying GOS-NIZK, our NIZK is a strict improvement on their proof size. As by-products of our main result, we also obtain the following two results: (1) We construct a perfectly zero-knowledge NIZK (NIPZK) for NP relations computable in NC1 with proof size |w| \cdot \poly(\lambda) where ∣w∣|w| is the witness length based on the DLIN assumption. This is the first pairing-based NIPZK for a non-trivial class of NP languages whose proof size is independent of ∣C∣|C| based on a standard assumption. (2)~We construct a universally composable (UC) NIZK for NP relations computable in NC1 in the erasure-free adaptive setting whose proof size is |w| \cdot \poly(\lambda) from the DLIN assumption. This is an improvement over the recent result of Katsumata, Nishimaki, Yamada, and Yamakawa (CRYPTO\u2719), which gave a similar result based on a non-static qq-type assumption. The main building block for all of our NIZKs is a constrained signature scheme with decomposable online-offline efficiency. This is a property which we newly introduce in this paper and construct from the DLIN assumption. We believe this construction is of an independent interest

    Decentralized Multi-Authority ABE for NC^1 from Computational-BDH

    Get PDF
    Decentralized multi-authority attribute-based encryption (-) is a strengthening of standard ciphertext-policy attribute-based encryption so that there is no trusted central authority: any party can become an authority and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters. Essentially, any party can act as an authority for some attribute by creating a public key of its own and issuing private keys to different users that reflect their attributes. This paper presents the first - proven secure under the standard search variant of bilinear Diffie-Hellman (CBDH) and in the random oracle model. Our scheme supports all access policies captured by 1 circuits. All previous constructions were proven secure in the random oracle model and additionally were based on decision assumptions such as the DLIN assumption, non-standard -type assumptions, or subspace decision assumptions over composite-order bilinear groups

    Towards Tightly Secure Short Signature and IBE

    Get PDF
    Constructing short signatures with tight security from standard assumptions is a long-standing open problem. We present an adaptively secure, short (and stateless) signature scheme, featuring a constant security loss relative to a conservative hardness assumption, Short Integer Solution (SIS), and the security of a concretely instantiated pseudorandom function (PRF). This gives a class of tightly secure short lattice signature schemes whose security is based on SIS and the underlying assumption of the instantiated PRF. Our signature construction further extends to give a class of tightly and adaptively secure ``compact Identity-Based Encryption (IBE) schemes, reducible with constant security loss from Regev\u27s vanilla Learning With Errors (LWE) hardness assumption and the security of a concretely instantiated PRF. Our approach is a novel combination of a number of techniques, including Katz and Wang signature, Agrawal et al.\ lattice-based secure IBE, and Boneh et al.\ key-homomorphic encryption. Our results, at the first time, eliminate the dependency between the number of adversary\u27s queries and the security of short signature/IBE schemes in the context of lattice-based cryptography. They also indicate that tightly secure PRFs (with constant security loss) would imply tightly, adaptively secure short signature and IBE schemes (with constant security loss)

    CP-ABE for Circuits (and more) in the Symmetric Key Setting

    Get PDF
    The celebrated work of Gorbunov, Vaikuntanathan and Wee provided the first key policy attribute based encryption scheme (ABE) for circuits from the Learning With Errors (LWE) assumption. However, the arguably more natural ciphertext policy variant has remained elusive, and is a central primitive not yet known from LWE. In this work, we construct the first symmetric key ciphertext policy attribute based encryption scheme (CP-ABE) for all polynomial sized circuits from the learning with errors (LWE) assumption. In more detail, the ciphertext for a message mm is labelled with an access control policy ff, secret keys are labelled with public attributes xx from the domain of ff and decryption succeeds to yield the hidden message mm if and only if f(x)=1f(x)=1. The size of our public and secret key do not depend on the size of the circuits supported by the scheme -- this enables our construction to support circuits of unbounded size (but bounded depth). Our construction is secure against collusions of unbounded size. We note that current best CP-ABE schemes [BSW07,Wat11,LOSTW10,OT10,LW12,RW13,Att14,Wee14,AHY15,CGW15,AC17,KW19] rely on pairings and only support circuits in the class NC1 (albeit in the public key setting). We adapt our construction to the public key setting for the case of bounded size circuits. The size of the ciphertext and secret key as well as running time of encryption, key generation and decryption satisfy the efficiency properties desired from CP-ABE, assuming that all algorithms have RAM access to the public key. However, the running time of the setup algorithm and size of the public key depends on the circuit size bound, restricting the construction to support circuits of a-priori bounded size. We remark that the inefficiency of setup is somewhat mitigated by the fact that setup must only be run once. We generalize our construction to consider attribute and function hiding. The compiler of lockable obfuscation upgrades any attribute based encryption scheme to predicate encryption, i.e. with attribute hiding [GKW17,WZ17]. Since lockable obfuscation can be constructed from LWE, we achieve ciphertext policy predicate encryption immediately. For function privacy, we show that the most natural notion of function hiding ABE for circuits, even in the symmetric key setting, is sufficient to imply indistinguishability obfuscation. We define a suitable weakening of function hiding to sidestep the implication and provide a construction to achieve this notion for both the key policy and ciphertext policy case. Previously, the largest function class for which function private predicate encryption (supporting unbounded keys) could be achieved was inner product zero testing, by Shen, Shi and Waters [SSW09]

    Unbounded Dynamic Predicate Compositions in ABE from Standard Assumptions

    Get PDF
    At Eurocrypt\u2719, Attrapadung presented several transformations that dynamically compose a set of attribute-based encryption (ABE) schemes for simpler predicates into a new ABE scheme for more expressive predicates. Due to the powerful unbounded and modular nature of his compositions, many new ABE schemes can be obtained in a systematic manner. However, his approach heavily relies on qq-type assumptions, which are not standard. Devising such powerful compositions from standard assumptions was left as an important open problem. In this paper, we present a new framework for constructing ABE schemes that allow unbounded and dynamic predicate compositions among them, and show that the adaptive security of these composed ABE will be preserved by relying only on the standard matrix Diffie-Hellman (MDDH) assumption. This thus resolves the open problem posed by Attrapadung. As for applications, we obtain various ABEs that are the first such instantiations of their kinds from standard assumptions.These include the following adaptively secure large-universe ABEs for Boolean formulae under MDDH: - The first completely unbounded monotone key-policy (KP)/ciphertext-policy (CP) ABE. Such ABE was recently proposed, but only for the KP and small-universe flavor (Kowalczyk and Wee, Eurocrypt\u2719). - The first completely unbounded non-monotone KP/CP-ABE. Especially, our ABEs support a new type of non-monotonicity that subsumes previous two types of non-monotonicity, namely, by Ostrovsky et al. (CCS\u2707) and by Okamoto and Takashima (CRYPTO\u2710). - The first (non-monotone) KP and CP-ABE with constant-size ciphertexts and secret keys, respectively. - The first KP and CP-ABE with constant-size secret keys and ciphertexts, respectively. At the core of our framework lies a new partially symmetric design of the core 1-key 1-ciphertext oracle component called Key Encoding Indistinguishability, which exploits the symmetry so as to obtain compositions

    Bounded Functional Encryption for Turing Machines: Adaptive Security from General Assumptions

    Get PDF
    The recent work of Agrawal et al., [Crypto \u2721] and Goyal et al. [Eurocrypt \u2722] concurrently introduced the notion of dynamic bounded collusion security for functional encryption (FE) and showed a construction satisfying the notion from identity based encryption (IBE). Agrawal et al., [Crypto \u2721] further extended it to FE for Turing machines in non-adaptive simulation setting from the sub-exponential learining with errors assumption (LWE). Concurrently, the work of Goyal et al. [Asiacrypt \u2721] constructed attribute based encryption (ABE) for Turing machines achieving adaptive indistinguishability based security against bounded (static) collusions from IBE, in the random oracle model. In this work, we significantly improve the state of art for dynamic bounded collusion FE and ABE for Turing machines by achieving adaptive simulation style security from a broad class of assumptions, in the standard model. In more detail, we obtain the following results: - We construct an adaptively secure (AD-SIM) FE for Turing machines, supporting dynamic bounded collusion, from sub-exponential LWE. This improves the result of Agrawal et al. which achieved only non-adaptive (NA-SIM) security in the dynamic bounded collusion model. - Towards achieving the above goal, we construct a ciphertext policy FE scheme (CPFE) for circuits of unbounded size and depth, which achieves AD-SIM security in the dynamic bounded collusion model from IBE and laconic oblivious transfer (LOT). Both IBE and LOT can be instantiated from a large number of mild assumptions such as the computational Diffie-Hellman assumption, the factoring assumption, and polynomial LWE. - We construct an AD-SIM secure FE for Turing machines, supporting dynamic bounded collusions, from LOT, ABE for NC1 (or NC) and private information retrieval (PIR) schemes which satisfy certain properties. This significantly expands the class of assumptions on which AD-SIM secure FE for Turing machines can be based. In particular, it leads to new constructions of FE for Turing machines including one based on polynomial LWE and one based on the combination of the bilinear decisional Diffie-Hellman assumption and the decisional Diffie-Hellman assumption on some specific groups. In contrast the only prior construction by Agrawal et al. achieved only NASIM security and relied on sub-exponential LWE. To achieve the above result, we define the notion of CPFE for read only RAM programs and succinct FE for LOT, which may be of independent interest. - We also construct an ABE scheme for Turing machines which achieves AD-IND security in the standard model supporting dynamic bounded collusions. Our scheme is based on IBE and LOT. Previously, the only known candidate that achieved AD-IND security from IBE by Goyal et al. relied on the random oracle model

    Adaptively Secure Constrained Pseudorandom Functions in the Standard Model

    Get PDF
    Constrained pseudorandom functions (CPRFs) allow learning ``constrained\u27\u27 PRF keys that can evaluate the PRF on a subset of the input space, or based on some predicate. First introduced by Boneh and Waters [AC’13], Kiayias et al. [CCS’13] and Boyle et al. [PKC’14], they have shown to be a useful cryptographic primitive with many applications. These applications often require CPRFs to be adaptively secure, which allows the adversary to learn PRF values and constrained keys in an arbitrary order. However, there is no known construction of adaptively secure CPRFs based on a standard assumption in the standard model for any non-trivial class of predicates. Moreover, even if we rely on strong tools such as indistinguishability obfuscation (IO), the state-of-the-art construction of adaptively secure CPRFs in the standard model only supports the limited class of NC1 predicates. In this work, we develop new adaptively secure CPRFs for various predicates from different types of assumptions in the standard model. Our results are summarized below. - We construct adaptively secure and O(1)O(1)-collusion-resistant CPRFs for tt-conjunctive normal form (tt-CNF) predicates from one-way functions (OWFs) where tt is a constant. Here, O(1)O(1)-collusion-resistance means that we can allow the adversary to obtain a constant number of constrained keys. Note that tt-CNF includes bit-fixing predicates as a special case. - We construct adaptively secure and single-key CPRFs for inner-product predicates from the learning with errors (LWE) assumption. Here, single-key security means that we only allow the adversary to learn one constrained key. Note that inner-product predicates include tt-CNF predicates for a constant tt as a special case. Thus, this construction supports more expressive class of predicates than that supported by the first construction though it loses the collusion-resistance and relies on a stronger assumption. - We construct adaptively secure and O(1)O(1)-collusion-resistant CPRFs for all circuits from the LWE assumption and indistinguishability obfuscation (IO). The first and second constructions are the first CPRFs for any non-trivial predicates to achieve adaptive security outside of the random oracle model or relying on strong cryptographic assumptions. Moreover, the first construction is also the first to achieve any notion of collusion-resistance in this setting. Besides, we prove that the first and second constructions satisfy weak 11-key privacy, which roughly means that a constrained key does not reveal the corresponding constraint. The third construction is an improvement over previous adaptively secure CPRFs for less expressive predicates based on IO in the standard model

    Compact Adaptively Secure ABE from k-Lin: Beyond NC1 and towards NL

    Get PDF
    We present a new general framework for constructing compact and adaptively secure attribute-based encryption (ABE) schemes from kk-Lin in asymmetric bilinear pairing groups. Previously, the only construction [Kowalczyk and Wee, Eurocrypt \u2719] that simultaneously achieves compactness and adaptive security from static assumptions supports policies represented by Boolean formulae. Our framework enables supporting more expressive policies represented by arithmetic branching programs. Our framework extends to ABE for policies represented by uniform models of computation such as Turing machines. Such policies enjoy the feature of being applicable to attributes of arbitrary lengths. We obtain the first compact adaptively secure ABE for deterministic and non-deterministic finite automata (DFA and NFA) from kk-Lin, previously unknown from any static assumptions. Beyond finite automata, we obtain the first ABE for large classes of uniform computation, captured by deterministic and non-deterministic logspace Turing machines (the complexity classes L\mathsf{L} and NL\mathsf{NL}) based on kk-Lin. Our ABE scheme has compact secret keys of size linear in the description size of the Turing machine MM. The ciphertext size grows linearly in the input length, but also linearly in the time complexity, and exponentially in the space complexity. Irrespective of compactness, we stress that our scheme is the first that supports large classes of Turing machines based solely on standard assumptions. In comparison, previous ABE for general Turing machines all rely on strong primitives related to indistinguishability obfuscation

    Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

    Get PDF
    In a non-interactive zero-knowledge (NIZK) proof, a prover can non-interactively convince a verifier of a statement without revealing any additional information. Thus far, numerous constructions of NIZKs have been provided in the common reference string (CRS) model (CRS-NIZK) from various assumptions, however, it still remains a long standing open problem to construct them from tools such as pairing-free groups or lattices. Recently, Kim and Wu (CRYPTO\u2718) made great progress regarding this problem and constructed the first lattice-based NIZK in a relaxed model called NIZKs in the preprocessing model (PP-NIZKs). In this model, there is a trusted statement-independent preprocessing phase where secret information are generated for the prover and verifier. Depending on whether those secret information can be made public, PP-NIZK captures CRS-NIZK, designated-verifier NIZK (DV-NIZK), and designated-prover NIZK (DP-NIZK) as special cases. It was left as an open problem by Kim and Wu whether we can construct such NIZKs from weak paring-free group assumptions such as DDH. As a further matter, all constructions of NIZKs from Diffie-Hellman (DH) type assumptions (regardless of whether it is over a paring-free or paring group) require the proof size to have a multiplicative-overhead ∣C∣⋅poly(κ)|C| \cdot \mathsf{poly}(\kappa), where ∣C∣|C| is the size of the circuit that computes the NP\mathbf{NP} relation. In this work, we make progress of constructing (DV, DP, PP)-NIZKs with varying flavors from DH-type assumptions. Our results are summarized as follows: 1. DV-NIZKs for NP\mathbf{NP} from the CDH assumption over pairing-free groups. This is the first construction of such NIZKs on pairing-free groups and resolves the open problem posed by Kim and Wu (CRYPTO\u2718). 2. DP-NIZKs for NP\mathbf{NP} with short proof size from a DH-type assumption over pairing groups. Here, the proof size has an additive-overhead ∣C∣+poly(κ)|C|+\mathsf{poly}(\kappa) rather then an multiplicative-overhead ∣C∣⋅poly(κ)|C| \cdot \mathsf{poly}(\kappa). This is the first construction of such NIZKs (including CRS-NIZKs) that does not rely on the LWE assumption, fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions. 3. PP-NIZK for NP\mathbf{NP} with short proof size from the DDH assumption over pairing-free groups. This is the first PP-NIZK that achieves a short proof size from a weak and static DH-type assumption such as DDH. Similarly to the above DP-NIZK, the proof size is ∣C∣+poly(κ)|C|+\mathsf{poly}(\kappa). This too serves as a solution to the open problem posed by Kim and Wu (CRYPTO\u2718). Along the way, we construct two new homomorphic authentication (HomAuth) schemes which may be of independent interest
    • …
    corecore