4 research outputs found

    Spaces of finite element differential forms

    Full text link
    We discuss the construction of finite element spaces of differential forms which satisfy the crucial assumptions of the finite element exterior calculus, namely that they can be assembled into subcomplexes of the de Rham complex which admit commuting projections. We present two families of spaces in the case of simplicial meshes, and two other families in the case of cubical meshes. We make use of the exterior calculus and the Koszul complex to define and understand the spaces. These tools allow us to treat a wide variety of situations, which are often treated separately, in a unified fashion.Comment: To appear in: Analysis and Numerics of Partial Differential Equations, U. Gianazza, F. Brezzi, P. Colli Franzone, and G. Gilardi, eds., Springer 2013. v2: a few minor typos corrected. v3: a few more typo correction

    Constructions of some minimal finite element systems

    Get PDF
    Within the framework of finite element systems, we show how spaces of differential forms may be constructed, in such a way that they are equipped with commuting interpolators and contain prescribed functions, and are minimal under these constraints. We show how various known mixed finite element spaces fulfill such a design principle, including trimmed polynomial differential forms, serendipity elements and TNT elements. We also comment on virtual element methods and provide a dimension formula for minimal compatible finite element systems containing polynomials of a given degree on hypercubes.Comment: Various minor changes, based on suggestions of paper referee
    corecore