11,156 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Private Data System Enabling Self-Sovereign Storage Managed by Executable Choreographies

    Full text link
    With the increased use of Internet, governments and large companies store and share massive amounts of personal data in such a way that leaves no space for transparency. When a user needs to achieve a simple task like applying for college or a driving license, he needs to visit a lot of institutions and organizations, thus leaving a lot of private data in many places. The same happens when using the Internet. These privacy issues raised by the centralized architectures along with the recent developments in the area of serverless applications demand a decentralized private data layer under user control. We introduce the Private Data System (PDS), a distributed approach which enables self-sovereign storage and sharing of private data. The system is composed of nodes spread across the entire Internet managing local key-value databases. The communication between nodes is achieved through executable choreographies, which are capable of preventing information leakage when executing across different organizations with different regulations in place. The user has full control over his private data and is able to share and revoke access to organizations at any time. Even more, the updates are propagated instantly to all the parties which have access to the data thanks to the system design. Specifically, the processing organizations may retrieve and process the shared information, but are not allowed under any circumstances to store it on long term. PDS offers an alternative to systems that aim to ensure self-sovereignty of specific types of data through blockchain inspired techniques but face various problems, such as low performance. Both approaches propose a distributed database, but with different characteristics. While the blockchain-based systems are built to solve consensus problems, PDS's purpose is to solve the self-sovereignty aspects raised by the privacy laws, rules and principles.Comment: DAIS 201
    corecore