3,027 research outputs found

    Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media

    Get PDF
    With the rise of social media, millions of people are routinely expressing their moods, feelings, and daily struggles with mental health issues on social media platforms like Twitter. Unlike traditional observational cohort studies conducted through questionnaires and self-reported surveys, we explore the reliable detection of clinical depression from tweets obtained unobtrusively. Based on the analysis of tweets crawled from users with self-reported depressive symptoms in their Twitter profiles, we demonstrate the potential for detecting clinical depression symptoms which emulate the PHQ-9 questionnaire clinicians use today. Our study uses a semi-supervised statistical model to evaluate how the duration of these symptoms and their expression on Twitter (in terms of word usage patterns and topical preferences) align with the medical findings reported via the PHQ-9. Our proactive and automatic screening tool is able to identify clinical depressive symptoms with an accuracy of 68% and precision of 72%.Comment: 8 pages, Advances in Social Networks Analysis and Mining (ASONAM), 2017 IEEE/ACM International Conferenc

    Semantics-driven event clustering in Twitter feeds

    Get PDF
    Detecting events using social media such as Twitter has many useful applications in real-life situations. Many algorithms which all use different information sources - either textual, temporal, geographic or community features - have been developed to achieve this task. Semantic information is often added at the end of the event detection to classify events into semantic topics. But semantic information can also be used to drive the actual event detection, which is less covered by academic research. We therefore supplemented an existing baseline event clustering algorithm with semantic information about the tweets in order to improve its performance. This paper lays out the details of the semantics-driven event clustering algorithms developed, discusses a novel method to aid in the creation of a ground truth for event detection purposes, and analyses how well the algorithms improve over baseline. We find that assigning semantic information to every individual tweet results in just a worse performance in F1 measure compared to baseline. If however semantics are assigned on a coarser, hashtag level the improvement over baseline is substantial and significant in both precision and recall

    Alexandria: Extensible Framework for Rapid Exploration of Social Media

    Full text link
    The Alexandria system under development at IBM Research provides an extensible framework and platform for supporting a variety of big-data analytics and visualizations. The system is currently focused on enabling rapid exploration of text-based social media data. The system provides tools to help with constructing "domain models" (i.e., families of keywords and extractors to enable focus on tweets and other social media documents relevant to a project), to rapidly extract and segment the relevant social media and its authors, to apply further analytics (such as finding trends and anomalous terms), and visualizing the results. The system architecture is centered around a variety of REST-based service APIs to enable flexible orchestration of the system capabilities; these are especially useful to support knowledge-worker driven iterative exploration of social phenomena. The architecture also enables rapid integration of Alexandria capabilities with other social media analytics system, as has been demonstrated through an integration with IBM Research's SystemG. This paper describes a prototypical usage scenario for Alexandria, along with the architecture and key underlying analytics.Comment: 8 page
    • …
    corecore