73,763 research outputs found

    Polar Coding for Secret-Key Generation

    Full text link
    Practical implementations of secret-key generation are often based on sequential strategies, which handle reliability and secrecy in two successive steps, called reconciliation and privacy amplification. In this paper, we propose an alternative approach based on polar codes that jointly deals with reliability and secrecy. Specifically, we propose secret-key capacity-achieving polar coding schemes for the following models: (i) the degraded binary memoryless source (DBMS) model with rate-unlimited public communication, (ii) the DBMS model with one-way rate-limited public communication, (iii) the 1-to-m broadcast model and (iv) the Markov tree model with uniform marginals. For models (i) and (ii) our coding schemes remain valid for non-degraded sources, although they may not achieve the secret-key capacity. For models (i), (ii) and (iii), our schemes rely on pre-shared secret seed of negligible rate; however, we provide special cases of these models for which no seed is required. Finally, we show an application of our results to secrecy and privacy for biometric systems. We thus provide the first examples of low-complexity secret-key capacity-achieving schemes that are able to handle vector quantization for model (ii), or multiterminal communication for models (iii) and (iv).Comment: 26 pages, 9 figures, accepted to IEEE Transactions on Information Theory; parts of the results were presented at the 2013 IEEE Information Theory Worksho

    Development of Cryptography since Shannon

    Get PDF
    This paper presents the development of cryptography since Shannon\u27s seminal paper ``Communication Theory of Secrecy Systems\u27\u27 in 1949

    The impossibility of non-signaling privacy amplification

    Full text link
    Barrett, Hardy, and Kent have shown in 2005 that protocols for quantum key agreement exist the security of which can be proven under the assumption that quantum or relativity theory is correct. More precisely, this is based on the non-local behavior of certain quantum systems, combined with the non-signaling postulate from relativity. An advantage is that the resulting security is independent of what (quantum) systems the legitimate parties' devices operate on: they do not have to be trusted. Unfortunately, the protocol proposed by Barrett et al. cannot tolerate any errors caused by noise in the quantum channel. Furthermore, even in the error-free case it is inefficient: its communication complexity is Theta(1/epsilon) when forcing the attacker's information below epsilon, even if only a single key bit is generated. Potentially, the problem can be solved by privacy amplification of relativistic - or non-signaling - secrecy. We show, however, that such privacy amplification is impossible with respect to the most important form of non-local behavior, and application of arbitrary hash functions.Comment: 24 pages, 2 figure

    Coexistence and Secure Communication in Wireless Networks

    Get PDF
    In a wireless system, transmitted electromagnetic waves can propagate in all directions and can be received by other users in the system. The signals received by unintended receivers pose two problems; increased interference causing lower system throughput or successful decoding of the information which removes secrecy of the communication. Radio frequency spectrum is a scarce resource and it is allocated by technologies already in use. As a result, many communication systems use the spectrum opportunistically whenever it is available in cognitive radio setting or use unlicensed bands. Hence, efficient use of spectrum by sharing users is crucial to increase maximize system throughput. In addition, secrecy of a wireless communication system is traditionally provided by computational complexity of cryptography techniques employed. However, cryptography systems depend on either a random secret key generation mechanism or a trusted key distribution system. Recent developments in the wireless communication area provided a solution to both key generation and distribution problem via exploiting randomness of the wireless channel unconditional to the computational complexity. In this dissertation, we propose solutions to the problems discussed. For spectrum sharing, we present a detailed analysis of challenges of efficient spectrum sharing without a central enforcing mechanism, provide insight to already existing power control algorithms and propose a novel non-greedy power allocation algorithm. Numerical simulations show that the proposed algorithm increases system throughput more than greedy algorithms and can use available spectrum to the fullest, yet it is robust to the presence of greedy users. For secrecy, we propose a practical and fast system for random secret key generation and reconciliation. We extend the proposed system to multiple-input-multiple-output systems and increase security via role reversal of the nodes while making it quicker by pre-encoding procedure. Information theory calculation and numerical simulations demonstrates that the proposed system provides a secure channel for legitimate users in the presence of a passive eavesdropper

    No-signalling attacks and implications for (quantum) nonlocality distillation

    Get PDF
    The phenomenon of nonlocality, which can arise when entangled quantum systems are suitably measured, is perhaps one of the most puzzling features of quantum theory to the philosophical mind. It implies that these measurement statistics cannot be explained by hidden variables, as requested by Einstein, and it thus suggests that our universe may not be, in principle, a well-determined entity where the uncertainty we perceive in physical observations stems only from our lack of knowledge of the whole. Besides its philosophical impact, nonlocality is also a resource for information- theoretic tasks since it implies secrecy: If nonlocality limits the predictive power that any hidden variable (in the universe) can have about some observations, then it limits in particular the predictive power of a hidden variable held by an adversary in a cryptographic scenario. We investigate whether nonlocality alone can empower two parties to perform unconditionally secure communication in a feasible manner when only a provably minimal set of assumptions are made for such a task to be possible — independently of the validity of any physical theory (such as quantum theory). Nonlocality has also been of interest in the study of foundations of quantum theory and the principles that stand beyond its mathematical formalism. In an attempt to single out quantum theory within a broader set of theories, the study of nonlocality may help to point out intuitive principles that distinguish it from the rest. In theories where the limits by which quantum theory constrains the strength of nonlocality are surpassed, many “principles” on which an information theorist would rely on are shattered — one example is the hierarchy of communication complexity as the latter becomes completely trivial once a certain degree of nonlocality is overstepped. In order to study the structure of such super-quantum theories — beyond their aforementioned secrecy aspects — we investigate the phenomenon of distillation of nonlocality, the ability to distill stronger forms of nonlocality from weaker ones. By exploiting the inherent connection between nonlocality and secrecy, we provide a novel way of deriving bounds on nonlocality-distillation protocols through an ad versarial view to the problem
    • …
    corecore