5,798 research outputs found

    Publications of the Jet Propulsion Laboratory, July 1961 through June 1962

    Get PDF
    Jpl bibliography on space science, 1961-196

    Lunar Polar Coring Lander

    Get PDF
    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed

    America in space - The first decade. NASA spacecraft

    Get PDF
    Overview on NASA spacecraft subsystems and performanc

    This is NASA

    Get PDF
    Mission, facilities, and projects of NAS

    Space power systems technology enablement study

    Get PDF
    The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed

    Five day mission plan to investigate the geology of the Marius Hills region of the moon

    Get PDF
    Five-day mission plan to investigate geology of Marius Hills region of moo

    The utility of unmanned probes in lunar exploration

    Get PDF
    Utility of unmanned probes of Ranger or Surveyor class in Apollo exploration program - Lunar scientific exploratio

    Solar dynamic power for Earth orbital and lunar applications

    Get PDF
    Development of solar dynamic (SD) technologies for space over the past 25 years by NASA Lewis Research Center brought SD power to the point where it was selected in the design phase of Space Station Freedom Program as the power source for evolutionary growth. More recent studies showed that large cost savings are possible in establishing manufacturing processes at a Lunar Base if SD is considered as a power source. Technology efforts over the past 5 years have made possible lighter, more durable, SD components for these applications. A review of these efforts and respective benefits is presented

    NASA guidelines on report literature

    Get PDF
    NASA seeks for inclusion in its Scientific and Technical Information System research reports, conference proceedings, meeting papers, monographs, and doctoral and post graduate theses which relate to the NASA mission and objectives. Topics of interest to NASA are presented
    • …
    corecore