2,513,689 research outputs found

    Multipoint-to-multipoint network communication

    Get PDF
    We have formulated an exact ILP model for the problem of communicating on a virtual network. While this ILP model was successful in solving small problems, it is not recommended to handle larger instances, due to the fact that the number of variables in the model grows exponentially as the graph size grows. However, this ILP model can provide a benchmark for heuristic algorithms developed for this problem. We have also described a heuristic approach, and explored several variants of the algorithm. We found a solution that seems to perform well with reasonable computation time. The heuristic is able to find solutions that respect the degree constraints, but show a small number of violations of the desired time constraints. Tests on small problems show that heuristic is not always able to find feasible solutions, even though the exact method has shown they exist. It would be interesting in the future to look at whether insights gained by looking at exact solutions can be used to improve the heuristic

    Establishing Communication Network Management Among the Islamic University Library in West Java

    Full text link
    Through the provision of information resources, both printed materials and electronic forms are expected to meet the needs of the academic community of the institution, so that the role of the college library as "the hearts of educational programs" can be realized. Nevertheless, attempts to meet the information needs of the many and diverse library user libraries are not an easy task. Moreover, often the user has a high desire for the completeness and availability of the collection and this is often a problem and also the challenge of most library managers, especially college libraries. It is also felt by the managers of the library of Islamic universities in West Java like UIN Sunan Gunung Jati Bandung, IAIN Syeh Nurjati Cirebon and some other Islamic college libraries in West Java. One effort to address this need to be cooperation with libraries and other information centers to share information. In this communication communication perspective is a form of communication network. The mixed method is a strategy that uses quantitative and qualitative research in one study. Keywords: Communication network, library cooperation, college library

    Coalitional Manipulation on Communication Network

    Get PDF
    In an abstract model of division problems, we study division rules that are not manipulable through a reallocation of individual characteristic vectors within a coalition (e.g. reallocation of claims in bankruptcy problems). A coalition can be formed if members of the coalition are connected on a communication network, or a graph. We offer a characterization of non-manipulable division rules without any assumption on the structure of communication network. As corollaries, we obtain a number of earlier characterization results established with the assumption of complete network (complete graph) in various specialized settings. Moreover, our characterization, as we show, can be quite different from the earlier results depending on the network structure: for example, when the network is a tree, much larger family of rules are shown to be non-manipulable. The abstract model we consider can have various special examples such as bankruptcy problems, surplus sharing problems, cost sharing problems, social choice with transferable utility, etcDivision problem; Coalitional manipulation; Non-manipulability; Reallocation-proofness; Non-bossiness; Network

    Multi-channel Wireless Networks with Infrastructure Support: Capacity and Delay

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an \textit{MC-IS} network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an \textit{MC-IS} network. Our \textit{MC-IS} network is equipped with a number of infrastructure nodes which can communicate with common nodes using a number of channels where a communication between a common node and an infrastructure node is called an infrastructure communication and a communication between two common nodes is called an ad-hoc communication. Our proposed \textit{MC-IS} network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an \textit{SC-AH} network), a multi-channel wireless ad hoc network (called an \textit{MC-AH} network) and a single-channel network with infrastructure support (called an \textit{SC-IS} network). In particular, the \textit{network capacity} of our proposed \textit{MC-IS} network is nlogn\sqrt{n \log n} times higher than that of an \textit{SC-AH} network and an \textit{MC-AH} network and the same as that of an \textit{SC-IS} network, where nn is the number of nodes in the network. The \textit{average delay} of our \textit{MC-IS} network is logn/n\sqrt{\log n/n} times lower than that of an \textit{SC-AH} network and an \textit{MC-AH} network, and min(CI,m)\min(C_I,m) times lower than the average delay of an \textit{SC-IS} network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively.Comment: 12 pages, 6 figures, 3 table

    Sensor Networks with Random Links: Topology Design for Distributed Consensus

    Full text link
    In a sensor network, in practice, the communication among sensors is subject to:(1) errors or failures at random times; (3) costs; and(2) constraints since sensors and networks operate under scarce resources, such as power, data rate, or communication. The signal-to-noise ratio (SNR) is usually a main factor in determining the probability of error (or of communication failure) in a link. These probabilities are then a proxy for the SNR under which the links operate. The paper studies the problem of designing the topology, i.e., assigning the probabilities of reliable communication among sensors (or of link failures) to maximize the rate of convergence of average consensus, when the link communication costs are taken into account, and there is an overall communication budget constraint. To consider this problem, we address a number of preliminary issues: (1) model the network as a random topology; (2) establish necessary and sufficient conditions for mean square sense (mss) and almost sure (a.s.) convergence of average consensus when network links fail; and, in particular, (3) show that a necessary and sufficient condition for both mss and a.s. convergence is for the algebraic connectivity of the mean graph describing the network topology to be strictly positive. With these results, we formulate topology design, subject to random link failures and to a communication cost constraint, as a constrained convex optimization problem to which we apply semidefinite programming techniques. We show by an extensive numerical study that the optimal design improves significantly the convergence speed of the consensus algorithm and can achieve the asymptotic performance of a non-random network at a fraction of the communication cost.Comment: Submitted to IEEE Transaction

    Communication via entangled coherent quantum network

    Full text link
    A quantum network is constructed via maximum entangled coherent states. The possibility of using this network to achieve communication between multi-participants is investigated. We showed that the probability of teleported unknown state successfully, depends on the size the used network. As the numbers of participants increases, the successful probability does not depend on the intensity of the field. The problem of implementing quantum teleportation protocol via a noise quantum network is discussed. We show one can send information perfectly with small values of the field intensity and larger values of the noise strength. The successful probability of this suggested protocol increases abruptly for larger values of the noise strength and gradually for small values. We show that for small size of the used quantum network, the fidelity of the teleported state decreases smoothly, while it decreases abruptly for larger size of network

    On cost-effective communication network designing

    Full text link
    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.Comment: 6 pages, 4 figure
    corecore