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Abstract

In an abstract model of division problems, we study division rules that are not

manipulable through a reallocation of individual characteristic vectors within a

coalition (e.g. reallocation of claims in bankruptcy problems). A coalition can be

formed under a given communication network, a (non-directed) graph, if members

of this coalition are connected on the graph. We offer a characterization of non-

manipulable division rules without any assumption on the graph structure. When

the graph is complete, this result reduces to the results established by previous

authors. We also consider other special cases such as trees and graphs without a

“bridge”. The family of reallocation-proof rules can get larger or smaller depend-

ing on the graph structure. Our abstract model can have various special examples

such as bankruptcy, surplus sharing, cost sharing, income redistribution, social

choice with transferable utility, etc.

JEL Classification: C71, D30, D63, D71.

Keywords : Division problem; Coalitional manipulation; Reallocation-proofness;

Non-bossiness; Graph



1 Introduction

Division problems often take the following abstract form. There are a finite

number of agents. Each agent is characterized by a vector in RK
+ , where K is the

set of characteristics. An amount of resource, a real number, has to be divided

among these agents. A systematic method of division can be described by a

division rule associating with each division problem a vector of individual shares,

or awards.

A number of earlier authors have studied division rules that are robust to

coalitional manipulation through a reallocation of characteristic vectors (reallo-

cation of claims among a group of investors in the context of bankruptcy; real-

location of contributions in the context of surplus sharing, etc.). O’Neill (1982),

Moulin (1985a, 1987), Chun (1988), Moulin and Shenker (1992), de Frutos (1999),

Ching and Kakker (2001), Ju (2003), and Moreno-Ternero (2004) consider special-

ized models dealing with bankruptcy (or taxation), surplus sharing, social choice

with transferable utility, and cost allocation. Ju, Miyagawa, and Sakai (2003,

JMS below) consider the same abstract model as ours. One common and cru-

cial assumption in these works is that agents can form a coalition without any

restriction. In this paper, we consider more realistic scenario, in which coalition

formation is subject to communication network.

A communication network is described by a (non-directed) graph. A coalition

can be formed under a graph if members of this coalition are connected. A

division rule satisfies reallocation-proofness if no coalition can increase the total

award by a reallocation of characteristic vectors among its members. Our main

result is a characterization of reallocation-proof division rules. It is established

without any assumption on the graph.1 It yields various characterization results

depending on what specific structure the graph has. When the graph is complete

(any two nodes are directly linked), this result reduces to the results established

by previous authors. We also consider other special cases such as trees and rigid

graphs (graphs without a “bridge”). The family of reallocation-proof rules can

be larger or smaller depending on the graph structure.

The rest of the paper is organized as follows. In Section 2, we define our

model, communication network, axioms, and some important rules in this paper.

In Section 3, we state and prove preliminary results. In Section 4, we state our

main result. Some proofs are in Appendices A-C.

1We assume connectedness of the network but our result can be applied easily for any
disconnected network.
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2 Definitions

2.1 Model

There is a finite set N = {1, 2, . . . , n} of agents. Each agent i ∈ N is characterized

by a vector ci ≡ (cik)k∈K ∈ RK
+ , where K denotes the set of issues. We refer to ci

as i’s characteristic vector. A profile of characteristic vectors of agents is denoted

by c ≡ (ci)i∈N ∈ RN×K
+ , and the sum of these vectors is denoted by

c̄ ≡ (c̄k)k∈K ≡ (
∑
i∈N

cik)k∈K ∈ RK
+ .

A problem is a pair (c, E) ∈ RN×K
+ × R++, where c ∈ RN×K

+ is a profile of

characteristic vectors and E ∈ R++ is an amount to be divided. For simplicity,

we only consider problems such that c̄k > 0 for each k ∈ K. A domain is a

non-empty set of problems and is denoted by D. A division rule, or briefly, a

rule over a domain D is a function f associating with each problem (c, E) ∈ D a

vector of awards f(c, E) ∈ RN . A domain D is rich (JMS) if, for each problem

(c, E) ∈ D and each profile c̄ ∈ RN×K
+ such that c̄′ = c̄, we have (c̄′, E) ∈ D.

That is, D is rich if it is closed under reallocations of characteristic vectors. We

restrict our attention to rich domains. For each problem (c, E) ∈ D, let

D(c̄, E) ≡ {(c′, E) ∈ RN×K
+ × R++ : c̄′ = c̄}.

Then richness says that, for each (c, E) ∈ D, we have D(c̄, E) ⊆ D. Examples

of rich domains are the set of bankruptcy problems in O’Neill (1982), the set of

surplus sharing problems in Moulin (1987), the set of social choice problems with

transferable utilities in Moulin (1985), the set of cost sharing problems in Moulin

and Shenker (1992), etc.

We also use the following additional notation. For each S ⊆ N and each

c ∈ RN×K
+ ,

c̄S ≡ (c̄Sk)k∈K ≡ (
∑
i∈S

cik)k∈K ∈ RK
+ .

Similarly, for each S ⊆ N and each x ∈ RN
+ ,

x̄S ≡
∑
i∈S

xi.

Given x, y ∈ RM , x = y means that xm ≥ ym for each m; x ≥ y means that x = y

and x 6= y; and x > y means that xm > ym for each m.
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2.2 Communication Network and Coalition Structure

Before defining “coalitional manipulation”, we first need to explain possible coali-

tion formations. We assume that agents form a coalition through communication

on a network. The communication network is fixed throughout the paper. It is

described by a (non-directed) graph consisting of a set of nodes N and a set of

edges D ≡ {{i, j} : i, j ∈ N and i 6= j}. Let G ≡ (N, D). For simplicity, we

sometimes denote an edge {i, j} ∈ D by ij. Two nodes, i and j, are adjacent if

ij ∈ D.

A complete graph is a graph G ≡ (N, D) such that for each i, j ∈ N with

i 6= j, ij ∈ D. A path is a sequence of edges which are successively intersecting.

A path is denoted simply by listing nodes that the path follows. A line is a path

that never passes a node more than once. For each h, i, j ∈ N , we say i is between

h and j if every path including h and j includes also i. A cycle is a path that

passes more than two nodes and that passes one and only one node twice. With

a slight abuse of terminology, we say that a graph is a cycle when the graph itself

is a cycle. Similarly, we say that a graph is a line. A total line is a line containing

all nodes in N . A total cycle is a cycle containing all nodes in N .

For each S ⊆ N , let GS ≡ (S, DS ≡ {ij ∈ D : i, j ∈ S}) be the subgraph on S.

We say a subgraph GS is connected if for any two nodes i, j ∈ S, there is a path

in GS from i to j. Note that when S = ∅ or a singleton, GS is connected trivially.

We say that S is connected when GS is connected. Coalition S is admissible if

S is connected. Let C (G) be the set of admissible coalitions, called, the coalition

structure on G. For example, when G is a complete graph, C (G) equals the set of

all subsets of N , that is, 2N , which is called the unrestricted coalition structure.

Throughout the paper, we assume that G is connected. However, our results

are easily extended to the general case.2

A tree is a connected graph in which every two nodes have one and only one

path from one to another. A node i in a tree is an end node if i is not between

any two other nodes, that is, for all h, j ∈ N\{i}, i is not between h and j. If G is

a tree, by choosing any node i∗ ∈ N as a root, we can define the directed tree with

root i∗, denoted by G (i∗). In the directed tree G (i∗), for each i ∈ N , let s (i) be

the set of successors of i, including i itself, and s0 (i) the set of successors of i, not

including i. Let p (i) be the set of predecessors, including i itself, and p0 (i) the set

of predecessors of i, not including i. Let sm (i) be the set of immediate successors

2Note that any (possibly disconnected) graph is partitioned into the unique family of max-
imal connected subgraphs. Our results can be applied for each of these maximal connected
subgraphs.
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of i and pm (i) the immediate predecessor of i. Clearly, j ∈ sm (i) if and only if

i = pm (j). It should be noted that all these functions, s (·), s0 (·),sm (·), p (·),
p0 (·), and pm (·), depend on the choice of the root i∗.

An edge ij ∈ D is called a connection edge (also called an “isthmus” or a

“bridge” in Wilson 1979) if deleting ij from D results in a disconnected graph,

that is, (N, D\{ij}) is not connected. A graph G is rigid if it has no connection

edge.3 Thus a rigid graph remains connected after deleting any one of its edges.

We next define graphs in which no single node plays a critical role in keeping the

graph connected. A node i ∈ N is called a connection node if deleting i from

G results in a disconnected subgraph of G, that is, GN\{i} is not connected. A

graph G is rigid∗ if it is connected and it has no connection node.4 Thus a rigid∗

graph stays connected after a deletion of any single node. Clearly, if G has a total

cycle, G is rigid∗. There are, of course, rigid∗ graphs that have no total cycle. No

tree with at least three nodes is rigid∗.

2.3 Axioms

Our main objective is to study rules that are robust to coalitional manipulations

through reallocations of characteristic vectors. Since coalition formation is con-

strained by a graph, such a robustness can be formalized by the requirement that

the total amount allocated to each admissible coalition S ∈ C (G) should not be

affected by any reallocation of ci’s within S. Formally:

Reallocation-Proofness. For each (c, E) ∈ DN , each S ∈ C (G), and each

c′ ∈ RN×K
+ , if c̄′S = c̄S and c′N\S = cN\S,

∑
i∈S

fi(c
′, cN\S, E) =

∑
i∈S

fi(c, E). (1)

This axiom has been introduced by Moulin (1985a) and Chun (1988) in the

contexts of social choice with transferable utilities and claims problems, respec-

tively (they call this axiom “no advantageous reallocation”).

In the context of claims problems and their variants, the axiom means that

no group of agents can change their aggregate share by reallocating claims within

the group. If the left-hand side of (1) is larger than the right-hand side, then

group S with claim profile (ci)i∈S can gain by reallocating their claims to c′S (and

3Thus a graph is rigid if and only if its degree of “edge connectivity” (see p. 29 of Wilson 1979
for the definition) is equal to 1.

4Thus a graph is rigid∗ if and only if its degree of “connectivity” (see p. 29 of Wilson 1979
for the definition) is equal to 1.
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making appropriate side-payments). If the reverse inequality holds, then group S

with claims (c′i)i∈S can gain.

We also consider a weaker condition, by focusing on coalitions by pairs.

Pairwise Reallocation-Proofness. For each (c, E) ∈ DN , each ij ∈ D (so

{i, j} ∈ C (G)) and each c′i, c
′
j ∈ RK

+ , if c′i + c′j = ci + cj,

fi(c
′
i, c

′
j, cN\{i,j}, E) + fj(c

′
i, c

′
j, cN\{i,j}, E) = fi(c, E) + fj (c, E) .

The next axiom is a useful implication of reallocation-proofness (see Lemma 2).

It says that any admissible coalition cannot change, through a reallocation of char-

acteristic vectors, the shares of others, without affecting its own aggregate share.

This axiom is similar, in spirit, to “non-bossiness” in economic environments

introduced by Satterthwaite and Sonnenschein (1981).

Non-Bossiness. For each (c, E) ∈ DN , each S ∈ C (G), and each c′ ∈ RN×K
+ , if

c̄′S = c̄S, c′N\S = cN\S, and
∑

i∈S fi (c
′, E) =

∑
i∈S fi (c, E),

fN\S(c′, E) = fN\S(c, E). (2)

The next axiom is the pairwise version of non-bossiness.

Pairwise Non-Bossiness. For each (c, E) ∈ DN , each ij ∈ D, and each

c′i, c
′
j ∈ RK

+ , if c′i + c′j = ci + cj and fi(c
′
i, c

′
j, cN\{i,j}, E) + fj(c

′
i, c

′
j, cN\{i,j}, E) =

fi (c, E) + fj (c, E),

fN\{i,j}
(
c′i, c

′
j, cN\{i,j}, E

)
= fN\{i,j} (c, E) .

For example, in the context of bankruptcy problems, there is a large family

of non-bossy rules, known as “parametric rules”.

In some of our results, we characterize rules satisfying some combinations of

the following axioms as well as reallocation-proofness.

The next axiom says that awards should add up to the amount to divide:

Efficiency. For each (c, E) ∈ D,
∑

i∈N fi(c, E) = E.

Note that on the compact set D(c̄, E), each agent’s characteristic vector is

both bounded above and below. Then, it is appealing to require that each agent

should not get unlimited reward or unlimited loss on the set D (c̄, E). The next

axiom states an even weaker condition that at least one agent’s award should be

bounded above or below on D (c̄, E).

One-Sided Boundedness. For each (c, E) ∈ D, there exists i ∈ N such that

fi( · , E) is bounded from either above or below over D(c̄, E).
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This axiom is implied by each of the following two axioms. The first one

requires awards to be non-negative:

Non-Negativity. For each (c, E) ∈ D and each i ∈ N , fi(c, E) ≥ 0.

Another axiom that implies one-sided boundedness is no transfer paradox

(Moulin 1985a). It says that no agent can increase its award by transferring part

of its characteristic vector to other agents:

No Transfer Paradox. For each (c, E) ∈ D, each c′ ∈ RN×K
+ , each i, j ∈ N

with i 6= j, and each t ∈ [0, ci] ⊆ RK
+ ,5

fi(ci − t, cj + t, c−{i,j}, E) ≤ fi(ci, cj, c−{i,j}, E).

The next axiom says that no amount should be awarded to agents with the

zero characteristic vector:

No Award for Null. For each (c, E) ∈ D and each i ∈ N , if ci = 0, then

fi(c, E) = 0.

2.4 Examples of Division Rules

For the case when characteristic vectors are single-dimensional (i.e., |K| = 1),

one of the simplest and best-known rules is proportional rule, which divides the

total amount proportionally to characteristic vectors.

Definition 1 (Proportional Rule, |K| = 1). For each (c, E) ∈ D and each

i ∈ N ,6

fi(c, E) =
ci

c̄
E.

Ju, Miyagawa, and Sakai (2003) extend the definition of proportional rule

to the case of multi-dimensional characteristics, |K| ≥ 2. A weight function is

a function mapping each (c̄, E) ∈ RK
++ × R++ into a weight vector in ∆|K|−1,

W : RK
++ × R++ → ∆|K|−1.

Definition 2 (Proportional Rules, |K| ≥ 1). A rule f is a proportional rule

if there exists a weight function W such that, for each (c, E) ∈ D and each i ∈ N ,

fi(c, E) =
∑

k∈K

cik

c̄k

Wk(c̄, E)E.

We use PW to denote the proportional rule associated with W .

5Let [0, ci] ≡ [0, ci1]× · · · × [0, ciK ].
6The right-hand side is well-defined since we rule out problems for which c̄ = 0.
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Note that PW first applies the proportional rule to each single-dimensional

sub-problem (ck, E), where ck ≡ (cik)i∈N , and then takes the weighted average

of the solutions to the sub-problems using the vector of weights W (c̄, E). The

weights depend on the problem being considered but depend only on (c̄, E). Pro-

portional rules are efficient since
∑

k∈K Wk(c̄, E) = 1. Proportional rules also

satisfy all other axioms defined in Section 2.3. It is evident that, if |K| = 1,

Definition 2 reduces to Definition 1.

We now define generalized proportional rules, introduced by Ju, Miyagawa,

and Sakai (2003). These rules are characterized by two functions A : RK
++×R++ →

RN and W : RK
++×R++ → RK , and i’s award is given by the sum of the following

two terms. The first term is Ai(c̄, E), which is independent of i’s characteristic

vector but may treat i differently from others. The second term is proportional

to i’s characteristic vector and treats agents symmetrically. On the other hand,

the second term may treat issues asymmetrically, and the degree of importance

attached to each issue k ∈ K is given by Wk(c̄, E). Formally,

Definition 3 (Generalized Proportional Rules). There exist two functions

A : RK
++ × R++ → RN and W : RK

++ × R++ → RK such that, for each (c, E) ∈ D
and each i ∈ N ,

fi(c, E) = Ai(c̄, E) +
∑

k∈K

cik

c̄k

Wk(c̄, E)E. (3)

Note that W is not required to be a weight function, i.e., neither Wk(c̄, E) ≥ 0

nor
∑

k∈K Wk(c̄, E) = 1 is required. Proportional rules are special cases where

Ai = 0 and W is a weight function. Since, given (c̄, E), the second term of

(3) is linear in cik, generalized proportional rules satisfy reallocation-proofness

and one-sided boundedness. These rules do not necessarily satisfy other axioms

in Section 2.3. Necessary and sufficient conditions for (A,W ) to satisfy each of

those axioms are stated in Proposition 2.

3 Preliminary Results

We first establish two useful lemmas. The first lemma shows that any reallocation

of characteristic vectors among agents in a connected coalition can be described

by successive reallocations among edges in this coalition.

Lemma 1. If S is connected and c, c′ ∈ RN×K
+ are such that c̄′S = c̄S and

c′N\S = cN\S, then c′ can be reached from c through successive reallocations of

characteristic vectors among edges in S, that is, there exist a number r and
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S1, · · · , Sr ∈ DS and c1, c2, · · · , cr ∈ RN×K
+ such that c̄1

S1
= c̄S1, c1

N\S1
= cN\S1,

cr = c′, and for each m = 2, · · · , r, c̄m
Sm

= c̄m−1
Sm

and cm
N\Sm

= cm−1
N\Sm

.

Proof. Let S and c, c′ ∈ RN×K
+ be given as above. The formal proof is tedious

and so skipped. Below we only give the basic idea. Pick an agent, say 1, in S.

For any i ∈ S, since S is connected, there is a path from i to 1, denoted by pi,

and we can transfer all i’s characteristics in ci to 1’s through successive pairwise

reallocations along this path. Then we end up with c′′ ∈ RN×K
+ such that c′′1 ≡ c̄S,

c′′S\{1} = 0, and c′′N\S = cN\S. Now we do the reverse changes, that is, for each

i ∈ S, we use path pi to increase i’s vector from 0 to c′i and decrease 1’s vector

from c̄S to c̄S − c′i. Throughout this procedure, we always have non-negative

characteristic vectors for all agents and the constant sum of characteristic vectors

of agents in S. Since there is no change made in the characteristic vectors of

agents in N\S, the final outcome is c′.

We now establish logical relation among reallocation-proofness, non-bossiness,

and their pairwise versions.

Lemma 2. Assume that G is a connected graph.

(i) Reallocation-proofness implies non-bossiness.

(ii) Reallocation-proofness is equivalent to the combination of pairwise reallocation-

proofness and pairwise non-bossiness.

Proof. To prove part (i), let f be a rule satisfying reallocation-proofness. Let

S ⊆ N be a connected coalition on G and S 6= N . Let (c, E) ∈ D and c′ ∈ RN×K
+

be such that c̄S = c̄′S and cN\S = c′N\S. Let x ≡ f (c, E) and x′ ≡ f (c′, E). By

reallocation-proofness, x̄S = x̄′S. Since G is a connected graph, there exists a

node i1 ∈ N\S that is adjacent to a node in S. Let S1 ≡ S ∪ {i1}. Then S1 is

also connected and ci1 = c′i1 . Hence c̄S1(= c̄S + ci1) = c̄′S1
(= c̄′S + c′i1) and so by

reallocation-proofness, x̄S + xi1 = x̄′S + x′i1 . Since x̄S = x̄′S, xi1 = x′i1 . Suppose by

induction that k ≤ |N\S| and i1, · · · , ik ∈ N\S are such that Sk ≡ S∪{i1, · · · , ik}
is connected, c̄Sk

= c̄′Sk
, and x{i1,··· ,ik} = x′{i1,··· ,ik}. If N\Sk = ∅, we are done. If

not, then since G is a connected graph, there exists a node ik+1 ∈ N\Sk that is

adjacent to a node in Sk. Let Sk+1 ≡ Sk ∪ {ik+1}. Then Sk+1 is connected and

since c̄Sk
= c̄′Sk

and cik+1
= c′ik+1

, c̄Sk+1
= c̄′Sk+1

. Hence by reallocation-proofness,

x̄Sk+1
= x̄′Sk+1

. Since x̄Sk
(= x̄S + xi1 + · · · + xik) = x̄′Sk

(= x̄′S + x′i1 + · · · + x′ik),
xk+1 = x′k+1. Therefore, x{i1,··· ,ik+1} = x′{i1,··· ,ik+1}. Since N is finite, the iteration

will end after a finite number of steps and, at the end, we obtain xN\S = x′N\S.

By part (i), reallocation-proofness implies both pairwise reallocation-proofness

and pairwise non-bossiness. To prove the converse, let f be a rule satisfying pair-
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wise reallocation-proofness and pairwise non-bossiness. Let S ⊆ N be connected.

Let (c, E) , (c′, E) ∈ D be such that c̄S = c̄′S and cN\S = c′N\S. We only have to

show
∑

i∈S fi (c, E) =
∑

i∈S fi (c
′, E) and fN\S (c, E) = fN\S (c′, E).

By Lemma 1, there exist a number r, S1, S2, · · · , Sr ∈ DS, and c1, c2, · · · , cr ∈
RN×K

+ such that c̄1
S1

= c̄S1 , c1
N\S1

= cN\S1 , cr = c′, and for each m = 2, · · · , r,

c̄m
Sm

= c̄m−1
Sm

and cm
N\Sm

= cm−1
N\Sm

. By richness of D, (c1, E), · · · , (cr, E) ∈ D. For

each m = 1, · · · , r − 1, let xm ≡ f (cm, E). Let x ≡ f (c, E) and x′ ≡ f (c′, E).

Since c̄1
S1

= c̄S1 , then by pairwise reallocation-proofness, x̄1
S1

= x̄S1 . By pairwise

non-bossiness, x1
N\S1

= xN\S1 . Since S1 ⊆ S, then x̄1
S = x̄S and x1

N\S = xN\S.

For each m = 2, · · · , r, since c̄m
Sm

= c̄m−1
Sm

, then by pairwise reallocation-proofness,

x̄m
Sm

= x̄m−1
Sm

and by pairwise non-bossiness, xm
N\Sm

= xm−1
N\Sm

. Since Sm ⊆ S, then

x̄m
S = x̄m−1

S and xm
N\S = xm−1

N\S . This shows x̄′S = x̄S and x′N\S = xN\S.

Remark 1. (i) Reallocation-proofness implies non-bossiness if and only if the

graph is connected.

(ii) Even if the graph is connected, pairwise reallocation-proofness does not imply

pairwise non-bossiness.

By Lemma 2, reallocation-proofness in all our results can be replaced with the

combination of pairwise reallocation-proofness and pairwise non-bossiness. Also,

by virtue of Lemma 2, in order to check reallocation-proofness, we only need

to consider edges, instead of all possible coalitions, and check the two pairwise

axioms.

3.1 Complete Graph

Reallocation-proofness under the unrestricted coalition structure (that is, when G

is a complete graph) is studied by JMS. They offer the following characterization

results.

Proposition 1 (Ju, Miyagawa, and Sakai 2003). Assume that G is a com-

plete graph and |N | ≥ 3.

(i) A rule f on a rich domain D satisfies reallocation-proofness if and only if

there exist two functions A : RK
++ ×R++ → RN and Ŵ : R+ ×RK

++ ×R++ → RK

such that, for each (c, E) ∈ D and each i ∈ N ,

fi(c, E) = Ai(c̄, E) +
∑

k∈K

Ŵk(cik, c̄, E),

and Ŵ (·, c̄, E) is additive.

(ii) A rule on a rich domain D satisfies reallocation-proofness and one-sided
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boundedness if and only if it is a generalized proportional rule.

(iii) A rule on a rich domain D satisfies pairwise reallocation-proofness, effi-

ciency, no award for null, and non-negativity (or no transfer paradox) if and

only if it is a proportional rule.

By virtue of part (i) of Proposition 1, within reallocation-proof rules, neces-

sary and sufficient conditions for other axioms can be stated as conditions for the

two functions A (·) and Ŵ (·) as follows:

Proposition 2 (Ju, Miyagawa, and Sakai 2003). Assume that G is a com-

plete graph. Let f be a reallocation-proof rule represented by A : RK
++×R++ → RN

and Ŵ : R+×RK
++×R++ → RK as in part (i) of Proposition 1. Then f satisfies

(i) Efficiency if and only if for each (c, E) ∈ D,
∑
i∈N

Ai (c̄, E) +
∑

k∈K

Ŵk (c̄k, c̄, E) = E.

(ii) No award for nulls if and only if for each (c, E) ∈ D and each i ∈ N ,

Ai (c̄, E) = 0.

(iii) Non-negativity if and only if f satisfies one-sided boundedness and, for each

(c, E) ∈ D,

Ai (c̄, E) ≥ 0 for each i ∈ N ,

min
j∈N

Aj (c̄, E) +
∑

k∈K

min{0, Ŵk(c̄k, c̄, E)} ≥ 0.

(iv) No transfer paradox if and only if for each (c, E) ∈ D and each k ∈ K,

Ŵk (·, c̄, E) is non-decreasing.

In the next subsections, we will consider three types of “incomplete” graphs

which are crucial for establishing our theorem.

3.2 Tree

In this section, we consider the case when G is a tree.

The next result is a characterization of reallocation-proof rules.

Proposition 3. Assume that G is a tree. Then a rule f on a rich domain

D satisfies reallocation-proofness if and only if f is represented by a function

H : RK
+ × RK

++ × R++ → RN such that for each (c, E) ∈ D and each i ∈ N ,

fi (c, E) =

{
Hi

(
c̄s(i), c̄, E

)−∑
j∈sm(i) Hj

(
c̄s(j), c̄, E

)
, if sm(i) 6= ∅,

Hi (ci, c̄, E) , if sm (i) = ∅, (4)
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where s (·) and sm (·) are defined on a directed tree G (i∗) with root i∗ ∈ N .

Proof. Let G ≡ (N, D) be a tree. Fix i∗ ∈ N and consider the directed tree with

root i∗, G (i∗). Let f be a rule given by (4). By Lemma 2, to prove reallocation-

proofness, we only have to prove pairwise reallocation-proofness and pairwise

non-bossiness. Note that we can rewrite (4) equivalently as follows: for each

(c, E) ∈ D and each i ∈ N ,

fi (c, E) =

{
Hi

(
c̄s(i), c̄, E

)−∑
j∈s0(i) fj (c, E) , if s0(i) 6= ∅,

Hi (ci, c̄, E) , if s0 (i) = ∅. . (?)

Thus, for each (c, E) ∈ D and each i ∈ N , Hi

(
c̄s(i), c̄, E

)
is the total award for

agent i and i’s successors, that is,

Hi

(
c̄s(i), c̄, E

)
=

∑

j∈s(i)

fj (c, E) . (??)

Note also that for each i ∈ N and each j ∈ sm (i),

fi (c, E) + fj (c, E) =


Hi

(
c̄s(i), c̄, E

)−Hj

(
c̄s(j), c̄, E

)−
∑

j′∈sm(i)\{j}
Hj′

(
c̄s(j′), c̄, E

)



+


Hj

(
c̄s(j), c̄, E

)−
∑

h∈sm(j)

Hh

(
c̄s(h), c̄, E

)

 .

Thus

fi (c, E) + fj (c, E) = Hi

(
c̄s(i), c̄, E

)−
∑

j′∈sm(i)\{j}
Hj′

(
c̄s(j′), c̄, E

)

−
∑

h∈sm(j)

Hh

(
c̄s(h), c̄, E

)
. (†)

The first term in (†) depends on (ci, cj) only through ci + cj and c̄, and the

remaining two terms depend on (ci, cj) only through c̄. Therefore, the coalition of

i and j cannot change their total award by any reallocation of their characteristic

vectors.

To prove pairwise non-bossiness, let h ∈ s (i) \{i, j}. If h is an end node,

fh (c, E) = Hh(ch, c̄, E). Then fh (c, E) depends on (ci, cj) only through c̄. Hence

fh (c, E) is not affected by any reallocation of characteristic vectors of i and j.

Now moving backward and using induction argument and (?), we can show that

fh (c, E) is not affected by any reallocation of characteristic vectors of i and j.
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The same argument will show that for each h who is neither a successor nor a

predecessor of i, h’s award is not affected by any reallocation of characteristic

vectors among i and j. Now consider h who is a predecessor of i. Then i, j ∈
s0 (h). Assume that h is an immediate predecessor of i. By (?), h’s award depends

on (ci, cj) only through c̄s(h), c̄, and
∑

k∈s0(h) fk (c, E). By the previous argument,

none of these factors is affected by a reallocation of characteristic vectors among i

and j. Therefore, h’s award is not affected either. Arguing inductively, we obtain

the same conclusion for each predecessor of i. Therefore f satisfies pairwise non-

bossiness.

To prove the converse, let f be a rule satisfying reallocation-proofness. Then

by Lemma 2, it also satisfies non-bossiness. For each i ∈ N , define H as follows:

for each i ∈ N and each (x, y, E) ∈ RK
+ × RK

++ × R++ with x ≤ y,

Hi (x, y, E) ≡
∑

j∈s(i)

fj (c, E) ,

for some (c, E) ∈ D with c̄s(i) = x and c̄ = y. For all other (x, y, E) ∈ RK
+×RK

++×
R++, set Hi (x, y, E) arbitrarily. Then (?) follows directly from the definition of

H and we obtain (4). Therefore, we only have to show that H is well-defined.

Let c, c′ ∈ RN×K
+ be such that c̄s(i) = c̄′s(i) = x and c̄ = c̄′ = y. Let x ≡ f (c, E),

x′ ≡ f (c′, E), and x′′ ≡ f(cs(i), c
′
N\s(i), E). Since N\s (i) is connected, then by

reallocation-proofness and non-bossiness, xs(i) = x′′s(i) (and x̄N\s(i) = x̄′′N\s(i)).
Since s (i) is also connected, then by reallocation-proofness and non-bossiness,

x̄′′s(i) = x̄′s(i) (and x′′N\s(i) = x′N\s(i)). Therefore, x̄s(i) = x̄′s(i).

Although the domain of Hi is stated as RK
+ × RK

++ × R++ in Proposition 3,

only its subset {(x, y, E) ∈ RK
+ ×RK

++ ×R++ : for some (c, E) ∈ D, c̄s(i) = x and

c̄ = y} matters.7 What values Hi takes outside this subset is not relevant to our

result and in (4). In what follows we will say that H or Hi has a certain property,

when it has the property only over this subset.

Note that when f is a generalized proportional rule associated with (A,W ),

then for each (c, E) ∈ D and each i ∈ N ,

Hi (c, E) =
∑

j∈s(i)

Aj(c̄, E) +
∑

k∈K

c̄s(i)k

c̄k

Wk(c̄, E)E.

Proposition 4. Assume that G is a tree. Let f be a reallocation-proof rule

represented by H : RK
+ × RK

++ × R++ → RN as in Proposition 3, where s (·) and

7In particular, for Hi∗ (·, c̄, E), only one value Hi∗ (c̄, c̄, E) matters.
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sm (·) be defined on a directed tree G (i∗) with root i∗ ∈ N . Then f satisfies

(i) Efficiency if and only if Hi∗ (c̄, c̄, E) = E for each (c, E) ∈ D.

(ii-1) Assume that G (i∗) has a node i 6= i∗ with at least two immediate successors

(that is, G is a non-linear tree). Then f satisfies no award for null if and only if

H1 = · · · = HN ≡ H0 and for each (c, E) ∈ D, H0 (·, c̄, E) is additive.

Hence, for each (c, E) ∈ D, H0 (0, c̄, E) = 0 and H0 (·, c̄, E) can be decomposed

into K functions as follows

fi (c, E) = H0 (ci, c̄, E)

=
∑

k∈K

Ŵk (cik, c̄, E) ,

where Ŵk (cik, c̄, E) ≡ H0 (cikuk, c̄, E), denoting the kth unit vector of RK by uk,

and so Ŵk (·, c̄, E) is additive.

(ii-2) When G is a line, f satisfies no award for null if and only if for each

(c̄, E) ∈ RK
++ × R++

H1 = H2 = · · · = HN ≡ H0,

H0 (0, c̄, E) = 0.

(iii) Non-negativity if and only if for each i ∈ N , each x, y ∈ RK
+ , each E ∈ R++,

and each (aj)j∈sm(i) ∈ Rsm(i)×K
+ with 0 ≤ ∑

j∈sm(i) aj ≤ x ≤ y.

Hi (x, y, E) ≥
∑

j∈sm(i)

Hj (aj, y, E) , if sm (i) 6= ∅,

Hi (x, y, E) ≥ 0, if sm (i) = ∅.

(iv) No transfer paradox if and only if Hi (·, c̄, E) is non-decreasing for each i ∈ N

and each (c, E) ∈ D.

Thus, if f satisfies no award for null, then non-negativity is equivalent to no

transfer paradox.

Proof. (i): This follows from s (i∗) = N and the fact that for each (c, E) and

each i ∈ N , Hi

(
c̄s(i), c̄, E

)
=

∑
j∈s(i) fj (c, E).

(ii-1): Let f satisfy no award for null. Then by (4), for each i ∈ N and each

(c, E) ∈ D with ci = 0,

Hi


 ∑

j∈sm(i)

c̄s(j), c̄, E


 =

∑

j∈sm(i)

Hj

(
c̄s(j), c̄, E

)
. (5)
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Thus for each i ∈ N , each (xj)j∈sm(i) ∈ Rsm(i)×K
+ , and each (y, E) ∈ RK

++ × R++,

if there is (c, E) ∈ D such that ci = 0, c̄s(j) = xj for each j ∈ sm (i), and c̄ = y,

then

Hi

(
x̄sm(i), y, E

)
=

∑

j∈sm(i)

Hj (xj, y, E) . (∗)

By no award for null and (??) in the proof of Proposition 3, for each i ∈ N and

each (c, E) ∈ D, if all successors of i have the zero characteristic vector, then

they all receive nothing and so
∑

j∈s(i) fj (c, E) = 0. Hence, for each (y, E) ∈
RK

++ × RK
++,

Hi (0, y, E) = 0. (∗∗)
Let i ∈ N and j ∈ sm (i). Let (c, E) ∈ D be such that ci = 0 and for each

h ∈ s (i) \{j}, ch = 0. Then by (5) and (∗∗), Hi (cj, c̄, E) = Hj (cj, c̄, E). Since

this holds for each cj with 0 ≤ cj ≤ c̄, Hi = Hj. Using this and the tree structure

of G, we show H1 = · · · = HN . Let H0 be the common function. For each

(c, E) ∈ D, if there is a node i ∈ N\{i∗} with at least two immediate successors,

we obtain additivity of H0 (·, c̄, E) from (∗) (note that if (∗) holds for i = i∗,
then we can only obtain the limited additivity of H0 (·, c̄, E) saying that for each

x, x′ ∈ RK
+ , if x + x′ = c̄, H0 (x, c̄, E) + H0 (x′, c̄, E) = H0 (x + x′, c̄, E)). Using

additivity of H0 (·, c̄, E) and (4) in Proposition 3, we show fi (c, E) = H0 (ci, c̄, E).

The converse follows easily from the fact that H0 (0, c̄, E) = 0 and fi (c, E) =

H0 (ci, c̄, E) for each (c, E) ∈ D.

(ii-2): This is easily proven using part (ii)-1.

(iii): This part follows directly from (4).

(iv): Assume that f satisfies no transfer paradox. Let i be a terminal node,

that is, s0 (i) = ∅. Then for each (c, E) ∈ D, since fi (c, E) = Hi (ci, c̄, E),

Hi (·, c̄, E) is non-decreasing. Let j be such that for each i ∈ s0 (j), s0 (i) =

∅. Then fj (c, E) = Hj

(
c̄s(j), c̄, E

) − ∑
i∈sm(j) Hi (ci, c̄, E) and for each i ∈

sm (j), Hi (·, c̄, E) is non-decreasing. Consider transferring t ∈ [0, ci] from h ∈
p0 (j) to j. Then by no transfer paradox, j’s award should not decrease. Thus

Hj

(
c̄s(j) + t, c̄, E

)−∑
i∈sm(j) Hi (ci, c̄, E) ≥ Hj

(
c̄s(j), c̄, E

)−∑
i∈sm(j) Hi (ci, c̄, E).

Hence, Hj

(
c̄s(j) + t, c̄, E

) ≥ Hj

(
c̄s(j), c̄, E

)
. This shows that Hj (·, c̄, E) is non-

decreasing. Proceeding backward, we complete our proof. The converse is shown

easily.

Remark 2. When G is a non-linear tree, adding no award for null, we obtain a

subfamily of rules that are characterized in part (i) of Proposition 1 and that have

Ai (·) = 0 for each i ∈ N . Thus, given no award for null, reallocation-proofness

on a tree is equivalent to reallocation-proofness on a complete graph. Therefore,
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all earlier characterization results based on reallocation-proofness on a complete

graph and no award for null continue to hold on a tree.

Line

If G is a line, then given an end node i∗ ∈ N and the directed line G (i∗),
any node can have at most one immediate successor. Thus, the set of immediate

successors of i, sm (i), is either empty or a singleton. From Proposition 3, we

obtain:

Corollary 1. Assume that G is a line. A rule f on a rich domain D satisfies

reallocation-proofness if and only if f is represented by a function H : RK
+×RK

++×
R++ → RN such that for each (c, E) ∈ D and each i ∈ N ,

fi (c, E) =

{
Hi

(
c̄s(i), c̄, E

)
, if sm (i) = ∅;

Hi

(
c̄s(i), c̄, E

)−Hsm(i)

(
c̄s(sm(i)), c̄, E

)
, if sm (i) 6= ∅, (6)

where, for an end node i∗ ∈ N , s (·) and sm (·) are defined on the directed line

G (i∗).

Combining reallocation-proofness, efficiency, and no award for null, we obtain:

Corollary 2. Assume that G is a line. A rule f on a rich domain D satisfies

reallocation-proofness, efficiency, and no award for null if and only if f is repre-

sented by a function H0 : RK
+ × RK

++ × R++ → R such that for each (c, E) ∈ D
and each i ∈ N , H0 (0, c̄, E) = 0, H0 (c̄, c̄, E) = E, and

fi (c, E) =

{
H0(ci, c̄, E), if sm (i) = ∅,
H0

(
c̄s(i), c̄, E

)−H0

(
c̄s(sm(i)), c̄, E

)
, if sm (i) 6= ∅,

where, for an end node i∗ ∈ N , s (·) and sm (·) are defined on the directed line

G (i∗).

Proposition 4 (parts 2.1 and 2.2) shows that when no award for null is imposed,

there is a remarkable difference between the linear tree case and the non-linear

tree case. As shown in Corollary 2, in the case of linear tree, there are rules that

are not necessarily a member of the family of rules characterized in Proposition 1

but that satisfy reallocation-proofness and no award for null. When G is a non-

linear tree, only those rules characterized in Proposition 1 satisfy the two axioms.

3.3 Rigid∗ Graph

In this section, we consider the case when G is rigid∗.
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In the next lemma, we show that reallocation-proofness under C (G) is equiv-

alent to reallocation-proofness under the unrestricted coalition structure.

Lemma 3. Given a connected graph G ≡ (N,D), let f be a rule satisfying

reallocation-proofness. For each T ⊆ N , if no node in N\T is a connection

node, then for each (c, E) , (c′, E) ∈ D with c̄T = c̄′T and cN\T = c′N\T ,

∑
i∈T

fi (c, E) =
∑
i∈T

fi (c
′, E) ,

fN\T (c, E) = fN\T (c′, E) .

Therefore, if G is rigid∗, then reallocation-proofness under C (G) is equivalent to

reallocation-proofness under the unrestricted coalition structure.

Proof. Let G ≡ (N,D) be a connected graph. Let f be a rule satisfying

reallocation-proofness under C (G). Then by Lemma 2, f satisfies non-bossiness.

Let T ⊆ N . Assume that no node in N\T is a connection node. Let (c, E) , (c′, E) ∈
D be such that c̄T = c̄′T and cN\T = c′N\T . Let x ≡ f (c, E) and x′ ≡ f (c′, E).

We only have to show x̄T = x̄′T and xN\T = x′N\T . Since N is connected, by

reallocation-proofness,

x̄N = x̄′N . (7)

For each i ∈ N\T , since i is not a connection node, N\{i} is connected. Since

c̄N\{i} = c̄′N\{i}, then by reallocation-proofness and non-bossiness, xi = x′i. Hence

xN\T = x′N\T . Combining this with (7), we obtain x̄T = x̄′T .

We will show later that rigidity∗ of G is the necessary and sufficient condition

for the equivalence between reallocation-proofness under C (G) and reallocation-

proofness under the unrestricted coalition structure.

It follows from this lemma and Proposition 1 that:

Proposition 5. Assume that graph G ≡ (N, D) is rigid∗ and |N | ≥ 3.

(i) A rule f on a rich domain D satisfies reallocation-proofness if and only if f is

represented by two functions A : RK
++×R++ → RN and Ŵ : R+×RK

++×R++ → RK

such that for each (c, E) ∈ D and each i ∈ N ,

fi(c, E) = Ai(c̄, E) +
∑

k∈K

Ŵk(cik, c̄, E),

and Ŵ (·, c̄, E) is additive.

(ii) A rule on a rich domain satisfies reallocation-proofness and one-sided bound-

edness if and only if it is a generalized proportional rule.
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(iii) A rule on a rich domain satisfies reallocation-proofness, no award for null,

and non-negativity (or no transfer paradox) if and only if it is a proportional

rule.

Proposition 2 also holds for rigid∗ graph G.

3.4 Rigid Graph

In this section, we consider the case when G is rigid.

Let S ⊆ N . Subgraph GS is maximally rigid∗ on G if there is no greater

rigid∗ subgraph, that is, there is no S ′ ⊆ N such that S ′ % S and GS′ is rigid∗.
In the next lemma, we show that each rigid graph is composed of maximal rigid∗

subgraphs connected with each other by connection nodes.

Lemma 4. Assume that G ≡ (N, D) is a rigid graph.

(i) The set of nodes N is uniquely divided into a finite number of subsets N1, · · · , NL

with ∪L
l=1Nl = N such that for each l = 1, · · · , L, |Nl| ≥ 3 and GNl

is a maximal

rigid∗ subgraph on G.

(ii) There is no cycle of successively intersecting sets among N1, · · · , NL, that is,

there is no r ≥ 3 and no Nl1 , · · · , Nlr ∈ {N1, · · · , NL} such that Nl1 ∩ Nl2 6=
∅, · · · , Nlr−1 ∩Nlr 6= ∅, and Nl1 = Nlr .

The proof is in Appendix A.

By Lemma 4, N has the unique family of subsets N1, · · · , NL such that for each

l ∈ {1, · · · , L}, |Nl| ≥ 3 and GNl
is a maximal rigid∗ subgraph. In this case, we say

that rigid graph G is composed of maximal rigid ∗ subgraphs GN1 , · · · , GNL
. Let

N ∗ (G) ≡ {N1, · · · , NL} andR∗ (G) ≡ {GN1 , · · · , GNL
}. For each l ∈ {1, · · · , L},

let

C (Nl) ≡ {i ∈ Nl : i is a connection node on G}
be the set of connection nodes in Nl on graph G. For each l ∈ {1, · · · , L} and

each i ∈ Nl, let

S (i, Nl) ≡ {j ∈ N\ [Nl\{i}] : i is between j and any node in Nl}

be the set of nodes outside Nl\{i} that can be connected with any node in Nl

only through i. Note i ∈ S(i, Nl). Note also that S(i, Nl) is not a singleton if and

only if i ∈ C(Nl). For example, if G is composed of two rigid∗ subgraphs GN1

and GN2 and the connection node is ı̂, then S (̂ı, N1) = N2, S (̂ı, N2) = N1, and

C(N1) = C(N2) = {ı̂}.
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Proposition 6. Assume that a rigid graph G ≡ (N, D) with |N | ≥ 3 is composed

of L maximal rigid∗ subgraphs GN1 , · · · , GNL
: that is, R∗ (G) ≡ {GN1 , · · · , GNL

}.
Then a rule over a rich domain D satisfies reallocation-proofness if and only if

there exists a list of functions (Al : RK
++ × R++ → RNl , Ŵ l : R+ × RK

++ × R++ →
RK)l∈{1,··· ,L} such that for each (c, E) ∈ D, each l ∈ {1, · · · , L}, and each i ∈ Nl,

if i ∈ Nl\C (Nl) ,

fi (c, E) = Al
i(c̄, E) +

∑

k∈K

Ŵ l
k(cik, c̄, E); (8)

and if i ∈ C (Nl) and {GNl1
, · · · , GNlr

} is the set of all rigid∗ subgraphs in R∗ (G)

other than GNl
, to which i also belongs,

fi (c, E) = Al
i (c̄, E) +

∑

k∈K

Ŵ l
k

(
c̄S(i,Nl)k, c̄, E

)

−
r∑

s=1

∑

j∈Nls\{i}
Als

j (c̄, E)

−
r∑

s=1

∑

k∈K

Ŵ ls
k


c̄[Nls\C(Nls)]k +

∑

j∈C(Nls)\{i}
c̄S(j,Nls )k, c̄, E


 , (9)

where for each l, l′ ∈ {1, · · · , L}, Ŵ l (·, c̄, E) is additive and

∑
i∈Nl

Al
i (c̄, E) +

∑

k∈K

Ŵ l
k (c̄k, c̄, E) =

∑
i∈Nl′

Al′
i (c̄, E) +

∑

k∈K

Ŵ l′
k (c̄k, c̄, E) . (10)

The proof is in Appendix B.

Remark 3. Note that when G is a rigid∗ graph, L = 1 and Proposition 6 reduces

to part (i) of Proposition 5.

We next establish necessary and sufficient conditions for the four additional

axioms, efficiency, no award for nulls, non-negativity, and no transfer paradox.

Proposition 7. Assume that a rigid graph G ≡ (N, D) with |N | ≥ 3 is composed

of L maximal rigid∗ subgraphs GN1 , · · · , GNL
: that is, R∗ (G) ≡ {GN1 , · · · , GNL

}.
Let f be a reallocation-proof rule represented by a list of functions (Al : RK

++ ×
R++ → RNl , Ŵ l : R+ × RK

++ × R++ → RK)l∈{1,··· ,L} as in Proposition 6. Then f

satisfies

(i) Efficiency if and only if for each (c, E) ∈ D and each l ∈ {1, . . . , L},
∑
i∈N

Al
i (c̄, E) +

∑

k∈K

Ŵ l
k (c̄k, c̄, E) = E.
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(ii) No award for nulls if and only if for each (c, E) ∈ D, each i ∈ N , and each

l, l′ ∈ {1, . . . , L},

Al
i (c̄, E) = 0;

Ŵ l (·, c̄, E) = Ŵ l′ (·, c̄, E) .

Thus by additivity of Ŵ l (·, c̄, E), f is a rule characterized in part (ii) of Propo-

sition 2.

(iii) Non-negativity if and only if f satisfies one-sided boundedness and, for each

(c, E) ∈ D and each l ∈ {1, . . . , L},

Al
i (c̄, E) ≥ 0 for each i ∈ N ,

min
j∈N

Al
j (c̄, E) +

∑

k∈K

min{0, Ŵ l
k(c̄k, c̄, E)} ≥ 0.

(iv) No transfer paradox if and only if for each (c, E) ∈ D, each k ∈ K, and each

l ∈ {1, . . . , L}, Ŵ l
k (·, c̄, E) is non-decreasing.

The proof is in Appendix B.

Remark 4. Part (ii) shows that under no award for nulls, reallocation-proofness

under C (G) is equivalent to reallocation-proofness under the unrestricted coali-

tion structure.

4 Theorem

We now consider the most general case when G is a connected graph.

The next lemma says that every connected graph is uniquely decomposed into

a family of maximal rigid subgraphs.

Lemma 5. Assume that G ≡ (N, D) is a connected graph.

(i) The set of nodes N is uniquely partitioned into a finite number of subsets

N1, · · · , NL such that for each l = 1, · · · , L, |Nl| = 1 or |Nl| ≥ 3 and GNl
is a

maximal rigid subgraph on G.

(ii) There is no cycle of sets among N1, · · · , NL, which are successively con-

nected by connection edges ; that is, there is no r ≥ 3 and no Nl1 , · · · , Nlr ∈
{N1, · · · , NL} such that Nl1 = Nlr and for two sequences of nodes, i1 ∈ Nl1 , · · · , ir−1 ∈
Nr−1 and j2 ∈ Nl2 , · · · , jr ∈ Nr, we have i1j2, i2j3, · · · , ir−1jr ∈ D.

The proof is in Appendix A.
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By Lemma 5, N is partitioned into maximal rigid subgraphs and these sub-

graphs are located with a tree structure. Formally:

Definition 4 (Tree of Maximal Rigid Subgraphs). Given a connected graph

G ≡ (N, D), let N be partitioned into N1, · · · , NL such that for each l = 1, · · · , L,

GNl
is a maximal rigid subgraph. We now define a graph G of which nodes are

composed of these subgraphs. Formally, let N ≡ {N1, · · · , NL} be the set of

nodes. For each l, l′ ∈ {1, · · · , L}, {Nl, Nl′} is an edge of G if there is an edge

of the original graph G, which connects Nl and Nl′ , that is, for some i ∈ Nl and

i′ ∈ Nl′ , ii′ ∈ D. Denote the set of edges of G by E . Then G ≡ (N , E) is a tree

because of part (ii) of Lemma 5.

Let R ≡ {GN1 , · · · , GNL
} be the set of maximal rigid subgraphs on G. Note

that for each l = 1, · · · , L, |Nl| = 1 or |Nl| ≥ 3. By Lemma 4, for each l =

1, · · · , L, Nl is again divided into a finite number Ll ∈ N of subsets, denoted

by Nl1, · · · , NlLl
, such that for each m = 1, · · · , Ll, GNlm

is a maximal rigid∗

subgraph on GNl
.

Next we define a family of rules that are similar to rules characterized in

Proposition 6 on each rigid subgraph GNl
∈ R with |Nl| ≥ 3 and that are similar

to rules characterized in Proposition 3 when we view the total award of each

group Nl ∈ N as the award for node Nl on the tree G.

Pick an arbitrary Nl∗ ∈ N and let G (Nl∗) be the directed tree with root Nl∗ .

Then we can define successors and predecessors on G(Nl∗). We use the same

notation as in Section 3.2 for the set of successors s (·), the set of immediate

successors sm (·), the set of predecessors p (·), and immediate predecessor pm (·).
But note that variables of these functions are different because now the set of

nodes is N , while it is N in Section 3.2. We also use notation s0 (·) and p0 (·) as

used in Section 3.2. For each l ∈ {1, · · · , L}, let

∪s (Nl) ≡
⋃

Nl′∈s(Nl)

Nl′

be the union of all Nl′ ∈ N that succeeds Nl on G(Nl∗). Similarly, let

∪so (Nl) ≡
⋃

Nl′∈so(Nl)

Nl′ .

For each l ∈ {1, · · · , L} and each m ∈ {1, · · · , Ll}, let

C (Nl) ≡ {j ∈ Nl : j is a connection node on G};
C(Nlm, GNl

) ≡ {j ∈ Nlm : j is a connection node on GNl
}.
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Let

C∗ (Nl) ≡ {i ∈ C (Nl) : for some Nl′ ∈ sm (Nl) and some j ∈ Nl, ij ∈ D}
be the set of all connection nodes i ∈ Nl on G, which belongs to a connection

edge connecting Nl to an immediate successor of Nl on G. For each l ∈ {1, · · · , L}
and each i ∈ Nl, let

sm (Nl; i) ≡ {Nk ∈ s0 (Nl) : for some j ∈ Nk, ij ∈ D},
s0 (Nl; i) ≡ ∪Nk∈sm(Nl;i)s (Nk) .

That is, sm(Nl; i) is the set of immediate successors of Nl, connected with Nl

through i, and s0(Nl; i) is the set of all successors of Nl that succeeds i. Note

that if i /∈ C∗(Nl), sm(Nl; i) = s0 (Nl; i) = ∅. Following the previous notational

convention, let

∪s0 (Nl; i) ≡ ∪Nk∈sm(Nl;i) ∪Nk′∈s(Nk) Nk′ .

For each i ∈ Nlm, let

S (i, Nlm) ≡ {j ∈ Nl\ [Nlm\{i}] : i is between j and each node in Nlm on GNl
}.

It should be noted that S (i, Nlm) is defined on the subgraph GNl
and i ∈

S (i, Nlm), and that S (i, Nlm) is not a singleton if and only if i ∈ C (Nlm, GNl
).

Let H : RK
+×RK

++×R++ → RL be a function such that for each l ∈ {1, · · · , L},
Hl describes the total award of all agents in ∪s (Nl), as a function of the sum of

characteristic vectors of these agents, c̄, and E. We now define the family of rules

represented by such a function H and a list of functions
((

Alm : RK
+ × RK

++ × R++ → RNlm , Ŵ lm : R+ × RK
+ × RK

++ × R++ → RK
)Ll

m=1

)L

l=1

,

where for each l ∈ {1, · · · , L}, each m ∈ {1, · · · , Ll}, and each (c, E) ∈ D,

Ŵ lm
(·, c̄∪s(Nl), c̄, E

)
is additive.

Definition 5 (HAW-Family). A rule f is in the HAW-Family if f is repre-

sented by a list of functions,

H : RK
+ × RK

++ × R++ → RL;

((Alm : RK
+ × RK

++ × R++ → RNlm , Ŵ lm : R+ × RK
+ × RK

++ × R++ → RK)Ll
m=1)

L
l=1

as follows: for each (c, E) ∈ D, each l ∈ {1, · · · , L}, each m ∈ {1, · · · , Ll}, and

each i ∈ Nlm,

(i) if i ∈ Nl\(C∗ (Nl) ∪ C (Nl, GNl
)),

fi (c, E) = Alm
i

(
c̄∪s(Nl), c̄, E

)
+

∑
k∈K

Ŵ lm
k (cik, c̄∪s(Nl), c̄, E), (11)
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(ii) if i ∈ C (Nl, GNl
) \C∗ (Nl) and {GNlm1

, · · · , GNlmr
} is the set of all rigid∗

subgraphs among {GNl1
, · · · , GNlLl

}\{GNlm
}, to which i also belongs,

fi (c, E) = Alm
i

(
c̄∪s(Nl), c̄, E

)
+

∑
k∈K

Ŵ lm
k

(
c̄S(i,Nlm)k, c̄∪s(Nl), c̄, E

)

−
r∑

s=1

∑
j∈Nlms\{i}

Alms
j

(
c̄∪s(Nl), c̄, E

)

−
r∑

s=1

∑
k∈K

Ŵ lms
k

(
c̄[Nlms\C(Nlms ,GNl

)]k +
∑

j∈C(Nlms ,GNl
)\{i}

c̄S(j,Nlms)k, c̄∪s(Nl), c̄, E

)
,

(12)

(iii) if i ∈ C∗ (Nl) ∩ (Nl\C (Nl, GNl
)),

fi (c, E) = Alm
i

(
c̄∪s(Nl), c̄, E

)
+

∑
k∈K

Ŵ lm
k (cik, c̄∪s(Nl), c̄, E)

− ∑
l′:Nl′∈sm(Nl;i)

Hl′
(
c̄∪s(Nl′ ), c̄, E

)
, (13)

(iv) if i ∈ C∗ (Nl) ∩ C (Nl, GNl
),

fi (c, E) = Alm
i

(
c̄∪s(Nl), c̄, E

)
+

∑
k∈K

Ŵ lm
k

(
c̄S(i,Nlm)k, c̄∪s(Nl), c̄, E

)

−
r∑

s=1

∑
j∈Nlms\{i}

Alms
j

(
c̄∪s(Nl), c̄, E

)

−
r∑

s=1

∑
k∈K

Ŵ lms
k

(
c̄[Nlms\C(Nlms ,GNl

)]k +
∑

j∈C(Nlms ,GNl
)\{i}

c̄S(j,Nlms )k, c̄∪s(Nl), c̄, E

)

− ∑
l′:Nl′∈sm(Nl;i)

Hl′
(
c̄∪s(Nl′ ), c̄, E

)
, (14)

where for each l ∈ {1, · · · , L}, each m ∈ {1, · · · , Ll}, and each (c, E) ∈ D,

Ŵ lm
(·, c̄∪s(Nl), c̄, E

)
is additive,

∑
i∈Nlm

Alm
i

(
c̄∪s(Nl), c̄, E

)
+

∑

k∈K

Ŵ lm
k

(
c̄∪s(Nl)k, c̄∪s(Nl), c̄, E

)
= Hl

(
c̄∪s(Nl), c̄, E

)
(15)

and, s (·), sm (·), and C∗ (·) are defined on the directed graph G (Nl∗) with

root Nl∗ ∈ N .8

8Condition (15) implies that for each m,m′ ∈ {1, . . . , Ll},
∑

i∈Nlm

Alm
i

(
c̄∪s(Nl), c̄, E

)
+

∑

k∈K

Ŵ lm
k

(
c̄∪s(Nl)k, c̄∪s(Nl), c̄, E

)

=
∑

i∈Nlm′

Alm′
i

(
c̄∪s(Nl), c̄, E

)
+

∑

k∈K

Ŵ lm′
k

(
c̄∪s(Nl)k, c̄∪s(Nl), c̄, E

)
,
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Now we are ready to state our main result.

Theorem. Assume that G is a connected graph and |N | ≥ 3. Then a rule over

a rich domain satisfies reallocation-proofness if and only if it is a member of the

HAW-family.

The proof is in Appendix C.

We next establish necessary and sufficient conditions for efficiency, no award

for nulls, non-negativity, and no transfer paradox.

Proposition 8. Assume that G is a connected graph and |N | ≥ 3. Let f be a

reallocation-proof rule represented by the following functions

H : RK
+ × RK

++ × R++ → RL;

((Alm : RK
+ × RK

++ × R++ → RNlm , Ŵ lm : R+ × RK
+ × RK

++ × R++ → RK)Ll
m=1)

L
l=1

as in Definition 5. Then f satisfies

(i) Efficiency if and only if for each (c, E) ∈ D, Hl∗ (c̄, c̄, E) = E;

(ii) Assume that L ≥ 2 and there is l ∈ {1, . . . , L} such that |Nl| ≥ 3 (otherwise,

Propositions 4 and 7 apply). Then f satisfies no award for nulls if and only if

for each (c, E) ∈ D and each i ∈ N ,

H0 (·) ≡ H1 (·) = · · · = HL (·) ,

fi (c, E) = H0 (ci, c̄, E) ,

and H0 (·, c̄, E) is additive (so H0 (0, c̄, E) = 0). Thus, for each (c, E) ∈ D,

H0 (·, c̄, E) can be decomposed into K functions and we have

fi (c, E) = H0 (ci, c̄, E)

=
∑

k∈K

Ŵk (cik, c̄, E) ,

where Ŵk (cik, c̄, E) ≡ H0 (cikuk, c̄, E), denoting the kth unit vector of RK by uk,

and for each l ∈ {1, . . . , L} and each m ∈ {1, . . . , Ll},
Ŵ lm (·, c̄, E) = Ŵ (·, c̄, E) .

(iii) Non-negativity if and only if f satisfies one-sided boundedness and, for each

(c, E) ∈ D, each l ∈ {1, . . . , L}, and each m ∈ {1, . . . , Ll},
Alm

i (c̄, E) ≥ 0 for each i ∈ Nlm,

min
j∈Nlm

Alm
j (c̄, E) +

∑

k∈K

min{0, Ŵ lm
k (c̄k, c̄, E)} ≥ 0,
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for each x, y ∈ RK
+ and each

(
aNl′

)
Nl′∈sm(Nl)

∈ Rsm(Nl)×K
+ with 0 ≤ ∑

Nl′∈sm(Nl)
aNl′ ≤

x ≤ y,

Hl (x, y, E) ≥
∑

Nl′∈sm(Nl)

Hl′(aNl′ , y, E), if sm (Nl) 6= ∅,

Hl (x, y, E) ≥ 0, if sm (Nl) = ∅.
(iv) No transfer paradox if and only if for each (c, E) ∈ D, each l ∈ {1, . . . , L},
each m ∈ {1, . . . , Ll}, and each k ∈ K, Ŵ lm

k

(·, c̄s(Nl), c̄, E
)

and Hl (·, c̄, E) are

non-decreasing.

The proof is in Appendix C.

Remark 5. Combining the necessary and sufficient conditions for no award for

nulls in Propositions 4, 7, and 8, we obtain the following relations: if G is not

a line, then for each rule f satisfying no award for nulls, f satisfies reallocation-

proofness under C (G) if and only if f satisfies reallocation-proofness under the

unrestricted coalition structure.

By Lemma 2, we may replace reallocation-proofness in Theorem 4 with the

combination of pairwise reallocation-proofness and pairwise non-bossiness.

Corollary 3. Assume that G is a connected graph. Then a rule over a rich

domain satisfies pairwise reallocation-proofness and pairwise non-bossiness if and

only if it is a member of the HAW-family.

It follows from Theorem 4 and Propositions 1-6 that:

Corollary 4. Assume that G is a connected graph. Then the following two state-

ments are equivalent :

(i) Graph G is rigid∗;
(ii) Reallocation-proofness under C (G) is equivalent to reallocation-proofness un-

der the unrestricted coalition structure.

A Structure of Connected Graph

In this section, we prove Lemmas 4 and 5. We begin with some useful facts on

rigid graphs and rigid∗ graphs.

Fact 1. When there are at least three nodes, rigidity∗ implies rigidity.

Proof. Let G ≡ (N, D) be rigid∗. Assume |N | ≥ 3. Suppose by contradiction

that G is not rigid. Let ij ∈ D be a connection edge. Then G′ ≡ (N,D\{ij}) is
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disconnected. Then since |N | ≥ 3, i or j has an adjacent node in N\{i, j} on G′.
Suppose that i has an adjacent node h ∈ N\{i, j} on G′. Then there is no path

from h to j on G′. Since the set of edges of GN\{i} is a subset of the set of edges

of G′, that is, D\{ij}, then there is no path from h to j on GN\{i} either. Thus

GN\{i} is disconnected. This shows that i is a connection node, contradicting

rigidity∗ of G.

Fact 2. When N ≡ {i, j} and D ≡ {ij}, G ≡ (N, D) is rigid∗ but not rigid.

Fact 3. If G is rigid, M ⊆ N , and GM is a maximal rigid∗ subgraph, then

|M | ≥ 3.

Proof. Suppose |M | = 1, say M = {i}. Then because G is connected, there is

j 6= i such that ij ∈ D. Then G{i,j} is rigid∗, contradicting the maximal rigidity

of GM . Suppose that |M | = 2, say, M = {i, j}. Let G′ ≡ (N,D\{ij}). Let Mi

be the set of nodes connected with i on G′ and Mj the set of nodes connected

with j on G′. Since G is rigid, then ij is not a connection edge. So Mi ∩Mj 6= ∅.
Let h ∈ Mi ∩Mj. Let p (i, h) be a path in G′

Mi
from i to h and p (h, j) a path in

G′
Mj

from h to j. Let M ′ be the set of nodes in the two paths. Clearly, M ⊆ M ′.
Then GM ′ has a total cycle and so it is a rigid∗ graph, contradicting the maximal

rigidity of GM .

Fact 4. Let G be rigid. Let M, M ′ ⊆ N be such that GM and GM ′ are maximal

rigid∗ subgraphs and M 6= M ′. Then

(i) Either |M ∩M ′| = 0 or 1.

(ii) If i ∈ M ∩M ′, i is a connection node on G.

(iii) If i ∈ M ∩M ′, h ∈ M , and h′ ∈ M ′, every path from h to h′ contains i, that

is, i is between h and h′.

Proof. Proof of (i). Suppose by contradiction that M ∩ M ′ contains at least

two nodes. For each i ∈ M\M ′, since i is not a connection node in GM , GM\{i}
is connected. Since i /∈ M ∩M ′ 6= ∅, every j ∈ M\{i} has a path to a node in

M ∩M ′, which has a path to any node in M ′. Thus, G(M∪M ′)\{i} is connected.

So i is not a connection node in GM∪M ′ . Similarly, we show that each i ∈ M ′\M
is not a connection node in GM∪M ′ . Now let i ∈ M ∩M ′. Since |M ∩M ′| ≥ 2,

there is j ∈ (M ∩M ′)\{i}. Since both GM and GM ′ are rigid∗, both GM\{i} and

GM ′\{i} are connected. Because j ∈ (M ∩ M ′)\{i}, any node in M\{i} has a

path, by way of j, to any node in M ′\{i} on G{M∪M ′}\{i}. Hence G{M∪M ′}\{i}
is connected and i is not a connection node. This holds for each i ∈ M ∩ M ′.
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Therefore, GM∪M ′ does not have any connection node and GM∪M ′ is rigid∗. This

contradicts the maximal rigidity∗ of GM .

Proof of (ii). Now let i ∈ M ∩ M ′. If i is not a connection node, GN\{i} is

connected. Pick h ∈ M\{i} and h′ ∈ M ′\{i}. Then there is a path from h to h′

on GN\{i}. Now combining this path with M ∪M ′, we obtain a rigid∗ subgraph,

contradicting the maximal rigidity∗ of GM .

Proof of (iii). This follows easily from (ii).

Now we are ready to prove Lemma 4.

Proof of Lemma 4. Let G ≡ (N, D) be a rigid graph.

Proof of part (i): We first show that N is divided into a finite number of

subsets N1, · · · , NL with ∪L
l=1Nl = N such that for each l = 1, · · · , L, |Nl| ≥ 3

and GNl
is a maximal rigid∗ subgraph on G. Pick a node i ∈ N . Find all

maximal rigid∗ subgraphs containing i. Let N1, · · · , Nm be the sets of nodes of

these subgraphs. Then because of rigidity of G and Fact 3, |N1|, · · · , |Nm| ≥
3. If ∪m

k=1Nk = N , we are done. Otherwise, since G is connected, pick j ∈
N\ ∪m

k=1 Nk and find all maximal rigid∗ subgraphs containing j. Denote the sets

of nodes of these subgraphs by Nm+1, · · · , Nm+n. Then |Nm+1|, · · · , |Nm+n| ≥ 3.

If ∪m+n
k=1 Nk = N , we are done. Otherwise, iterate the same procedure. Since N

is finite, the iteration will end after a finite number of steps and, at the end, we

get a list of subsets of N , N1, · · · , NL, with the desired properties.

To prove the uniqueness, let {N1, · · · , NL} and {N ′
1, · · · , NL′} be two fami-

lies of subsets of N satisfying the stated properties. Pick a node i ∈ N . Let

{N1, · · · , Nm} be the subfamily of elements in {N1, · · · , NL}, which include i.

Let {N ′
1, · · · , N ′

m′} be the subfamily of elements in {N ′
1, · · · , NL′}, which include

i. For each element Nk in the former subfamily, find j ∈ Nk that is adjacent to

i. Then there exists an element N ′
k′ in the latter family which include both i and

j (that is, ij is an edge of GN ′
k′
). Therefore, by Fact 4, Nk = N ′

k′ . This shows

{N1, · · · , Nm} ⊆ {N ′
1, · · · , N ′

m′}. Similarly, we can show the reverse inclusion.

Therefore, {N1, · · · , NL} = {N ′
1, · · · , NL′}.

Proof of part (ii): Suppose by contradiction that there exist Nl1 , · · · , Nlr ∈
{N1, · · · , NL} with r ≥ 3 such that Nl1 ∩ Nl2 6= ∅, · · · , Nlr−1 ∩ Nlr 6= ∅, and

Nl1 = Nlr . Then if we let M ≡ Nl1 ∪ · · · ∪Nlr , GM is rigid∗. This contradicts the

maximal rigidity∗ of GNk
for each k = 1, · · · , r.

We use the next fact to prove Lemma 5.
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Fact 5. If GM and GM ′ are maximal rigid subgraphs on G, then either M = M ′

or M ∩M ′ = ∅.

Proof. Let M,M ′ ⊆ N be given as above. Assume M 6= M ′. Suppose to the

contrary M ∩M ′ 6= ∅. Since GM has no connection edge disconnecting GM and

M ∩M ′ 6= ∅, there is no connection edge in GM disconnecting GM∪M ′ . Similarly,

there is no connection edge in GM ′ disconnecting GM∪M ′ . Therefore, GM∪M ′ has

no connection edge and so it is rigid. This contradicts maximal rigidity of GM

and GM ′ .

Fact 6. Assume that G ≡ (N,D) is a connected graph and that N is partitioned

into a finite number of subsets N1, · · · , NL such that for each l = 1, · · · , L, |Nl| =
1 or |Nl| ≥ 3 and GNl

is a maximal rigid subgraph on G. Then

(i) For each l, l′ = 1, · · · , L with l 6= l′, there can be at most one edge ii′ ∈ D such

that i ∈ Nl and i′ ∈ Nl′. If there is such an edge ii′ ∈ D, it is a connection edge.

(ii) For each l, l′ = 1, · · · , L with l 6= l′, if i ∈ Nl, i′ ∈ Nl′, and ii′ ∈ D, then for

each j ∈ Nl and each j′ ∈ Nl′, every path from j to j′ contains ii′, that is, both i

and i′ are between j and j′.

Proof. Proof of part (i): Let l, l′ ∈ {1, · · · , L} be such that l 6= l′. Suppose to

the contrary that at least two edges ii′, jj′ ∈ D such that i, j ∈ Nl and i′, j′ ∈ Nl′ .

Then any of these edges connecting Nl and Nl′ is not a connection edge on GNl∪Nl′ .

Since neither GNl
nor GNl′ has a connection edge, then no edge in GNl

or GNl′ is

a connection edge on GNl∪Nl′ . Therefore, GNl∪Nl′ has no connection edge and so

it is rigid. This contradicts to maximal rigidity of GNl
and GNl′ .

Now assume that ii′ ∈ D is such that i ∈ Nl and i′ ∈ Nl′ . If ii′ is not a

connection edge, then we can find a path from a node in Nl to another node

in Nl′ , which does not include ii′. Now combining this path, Nl, and Nl′ , we

can construct a larger rigid subgraph than GNl
and GNl′ , contradicting maximal

rigidity of GNl
and GNl′ .

Proof of part (ii): The proof follows directly from the definition of connection

edge.

Now we are ready to prove Lemma 5.

Proof of Lemma 5. Let G ≡ (N, D) be a connected graph.

Proof of part (i): Since any edge is not a rigid subgraph, then if M ⊆ N and

GM is rigid, either |M | = 1 or |M | ≥ 3. The proof of the existence of a partition

of N satisfying the property stated in part (i) is similar to the proof of part (i)
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in Lemma 4. The only difference is in showing that for any two subsets of N ,

M 6= M ′, if GM and GM ′ are maximal rigid subgraphs on G, then M ∩M ′ = ∅.
This is shown in Fact 5.

To prove the uniqueness, let {N1, · · · , NL} and {N ′
1, · · · , NL′} be two parti-

tions of N satisfying the stated properties. Pick a node i ∈ N . Without loss of

generality, let Nl and N ′
l′ be the members of the two partitions, which include i.

Since Nl ∩ N ′
l′ 6= ∅, then by Fact 5, Nl = N ′

l′ . Since this holds for every i ∈ N ,

the two partitions must be identical.

Proof of part (ii): Suppose by contradiction that there exist r ≥ 3, Nl1 , · · · , Nlr ∈
{N1, · · · , NL}, i1 ∈ Nl1 , · · · , ir−1 ∈ Nr−1, and j2 ∈ Nl2 , · · · , jr ∈ Nr such that

Nl1 = Nlr and i1j2, i2j3, · · · , ir−1jr ∈ D. Note that for each s ∈ {2, · · · , r − 2},
isjs+1 connects Nls and Nls+1 , and ir−1jr connects Nlr and Nl1 . Therefore, since

each member of {Nl1 , · · · , Nlr} is connected, then there is a path from i1 to j2

not containing i1j2 ∈ D. This means that deleting i1j2 does not disconnect G.

So i1j2 is not a connection edge, contradicting part (i) of Fact 6.

B Proof of Propositions 6 and 7

In this section, we prove Propositions 6 and 7.

Proof of Proposition 6. Let G ≡ (N, D) , N1, · · · , NL, and GN1 , · · · , GNL
be

given as in the proposition. Let f be a rule represented by a list of functions

(Al : RK
++ × R++ → RNl , Ŵ l : R+ × RK

++ × R++ → RK)L
l=1 as in (8)-(10). By

Lemma 2, to show reallocation-proofness of f , we only have to show pairwise

reallocation-proofness and pairwise non-bossiness. Let ij ∈ D be an edge and

i, j ∈ Nl for some l = 1, · · · , L. If i, j ∈ Nl\C (Nl), it follows directly from (8)

and additivity of Ŵ l (·, c̄, E) that the total award of i and j depends on ci and

cj only through ci + cj and c̄. Thus, i and j cannot change their total award by

a reallocation of ci and cj. Now consider the case that i ∈ C (Nl) or j ∈ C (Nl).

Assume that i ∈ C (Nl) and j ∈ N\C (Nl) (the same argument applies when j is

also in C (Nl)). Let {GNl1
, · · · , GNlr

} is the set of all rigid∗ subgraphs other than
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GNl
, to which i also belongs. Let (c, E) ∈ D. By (8) and (9),

fi (c, E) + fj (c, E) = Al
i (c̄, E)−

r∑
s=1

∑

h∈Nls\{i}
Als

h (c̄, E)

+
∑

k∈K

Ŵ l
k

(
c̄S(i,Nl)k, c̄, E

)

−
r∑

s=1

∑

k∈K

Ŵ ls
k


c̄[Nls\C(Nls )]k +

∑

h∈C(Nls )\{i}
c̄S(h,Nls )k, c̄, E




+Al
j(c̄, E) +

∑

k∈K

Ŵ l
k(cjk, c̄, E)

By additivity of Ŵ l (·, c̄, E), this can be rewritten as follows:

fi (c, E) + fj (c, E) = Al
i (c̄, E) + Al

j (c̄, E)−
r∑

s=1

∑

h∈Nls\{i}
Als

h (c̄, E)

+
∑

k∈K

Ŵ l
k

(
cik + cjk + c̄[S(i,Nl)\{i}]k, c̄, E

)

−
r∑

s=1

∑

k∈K

Ŵ ls
k


c̄[Nls\C(Nls )]k +

∑

h∈C(Nls )\{i}
c̄S(h,Nls )k, c̄, E


 .

Therefore, the total award of i and j depends on ci and cj only through ci + cj

and c̄. This shows that f satisfies pairwise reallocation-proofness. Pairwise non-

bossiness follows from the fact that in (8) and (9), the characteristic vectors of

each link ij ∈ D, ci and cj, affect the awards of others only through ci + cj and c̄.

To prove the converse, let f be a rule satisfying reallocation-proofness. Then

by Lemma 2, f satisfies non-bossiness. Let l ∈ {1, . . . , L}. Consider Nl and

rigid∗ subgraph GNl
. Let DNl

≡ {(d,E) ∈ RNl×K
+ × R++ : for some (c, E) ∈ D,

cNl\C(Nl) = dNl\C(Nl) and for each i ∈ C(Nl), c̄S(i,Nl) = di}. Let g : DNl
→ RNl be

defined as follows: for each (d, E) ∈ DNl
,

gi (d,E) ≡




fi (c, E) if i ∈ Nl\C(Nl),∑
j∈S(i,Nl)

fj (c, E) if i ∈ C(Nl),

where (c, E) ∈ D is such that cNl\C(Nl) = dNl\C(Nl) and for each i ∈ C(Nl),

c̄S(i,Nl) = di. To show that g is well-defined, let c, c′ be such that cNl\C(Nl) =

c′Nl\C(Nl)
= dNl\C(Nl) and for each i ∈ C(Nl), c̄S(i,Nl) = c̄′S(i,Nl)

= di. For each

i ∈ C(Nl), if coalition S(i, Nl) changes cS(i,Nl) to c′S(i,Nl)
, then since S (i, Nl) is con-

nected, by reallocation-proofness and non-bossiness, the total award of S (i, Nl)
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remains constant and the awards of all others also remain constant. After making

these changes for all agents in C(Nl), we finally get c′. And for each i ∈ C (Nl),

the total award of S (i, Nl) remains constant and the awards of all agents in

Nl\C(Nl) also remain constant. Therefore,

fi (c, E) = fi (c
′, E) , if i ∈ Nl\C(Nl);∑

j∈S(i,Nl)

fj (c, E) =
∑

j∈S(i,Nl)

fj (c′, E) , if i ∈ C(Nl).

This shows that g is well-defined.

We now show that g is a rule overDNl
satisfying pairwise reallocation-proofness

and pairwise non-bossiness under C (GNl
) and, therefore, satisfying reallocation-

proofness under C (GNl
). Let i∗, j∗ ∈ Nl\C(Nl) be such that i∗j∗ ∈ DNl

. Then

it follows from pairwise reallocation-proofness and pairwise non-bossiness of f

and the definition of g that this pair {i∗, j∗} cannot change their total award or

awards of others by any reallocation of characteristic vectors among the pair.

Now consider a pair {i∗, j∗} that is an edge in DNl
and i∗ ∈ C(Nl). Let

(d,E) , (d′, E) ∈ DNl
be such that dNl\{i∗,j∗} = d′Nl\{i∗,j∗} and di∗ + dj∗ = d′i∗ + d′j∗ .

Let c ∈ D be such that cNl\C(Nl) = dNl\C(Nl) and for each i ∈ C(Nl), c̄S(i,Nl) = di.

Without loss of generality, suppose j∗ /∈ C(Nl) (a similar argument applies

when j∗ ∈ C(Nl)). Let c′ be such that c̄′S(i∗,Nl)
= d′i∗ and c′j∗ = d′j∗ and for

each i /∈ S(i∗, Nl) ∪ {j∗}, c′i = ci. Then c̄′S(i∗,Nl)
+ c′j∗ = c̄S(i∗,Nl) + cj∗ and

c′N\(S(i∗,Nl)∪{j∗}) = cN\(S(i∗,Nl)∪{j∗}). Since i∗j∗ is an edge, S(i∗, Nl) ∪ {j∗} is con-

nected. Thus by reallocation-proofness and non-bossiness of f ,
∑

i∈S(i∗,Nl)∪{j∗}
fi (c

′, E) =
∑

i∈S(i∗,Nl)∪{j∗}
fi (c, E) ;

fN\(S(i∗,Nl)∪{j∗}) (c′, E) = fN\(S(i∗,Nl)∪{j∗}) (c, E) .

Therefore,

gi∗ (d′, E) + gj∗ (d′, E) = gi∗ (d,E) + gj∗ (d,E) ;

gN\{i∗,j∗} (c′, E) = gN\{i∗,j∗} (c, E) .

This shows that g satisfies pairwise reallocation-proofness and pairwise non-

bossiness under C (GNl
).

Since GNl
is rigid∗ and |Nl| ≥ 3, then applying Proposition 5, we conclude

that there exist Al : RK
++ × R++ → RNl and Ŵ l : R+ × RK

++ × R++ → RK such

that for each (d,E) ∈ DNl
and each i ∈ Nl,

gi(d,E) = Al
i(d̄, E) +

∑

k∈K

Ŵ l
k(dik, d̄, E),
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and Ŵ l
(·, d̄, E

)
is additive. Therefore, for each (c, E) ∈ D,

fi (c, E) = Al
i(c̄, E) +

∑

k∈K

Ŵ l
k(cik, c̄, E) if i ∈ Nl\C(Nl); (†)

∑

j∈S(i,Nl)

fj (c, E) = Al
i (c̄, E) +

∑

k∈K

Ŵ l
k

(
c̄S(i,Nl)k, c̄, E

)
if i ∈ C(Nl), (‡)

and Ŵ l (·, c̄, E) is additive.

Assume that {GNl1
, · · · , GNlr

} is the set of all rigid∗ subgraphs other than

GNl
, to which i also belongs. Using (†) and (‡), we obtain

fi (c, E) = Al
i (c̄, E) +

∑

k∈K

Ŵ l
k

(
c̄S(i,Nl)k, c̄, E

)

−
r∑

s=1

∑

j∈Nls\C(Nls )

(
Als

j (c̄, E) +
∑

k∈K

Ŵ ls
k (cjk, c̄, E)

)

−
r∑

s=1

∑

j∈C(Nls )\{i}

∑

j′∈S(j,Nls )

fj′ (c, E) .

Again by (‡) and additivity of Ŵ ls (·, c̄, E),

fi (c, E) = Al
i (c̄, E) +

∑

k∈K

Ŵ l
k

(
c̄S(i,Nl)k, c̄, E

)

−
r∑

s=1

∑

j∈Nls\C(Nls )

Als
j (c̄, E)−

r∑
s=1

∑

k∈K

Ŵ ls
k

(
c̄[Nls\C(Nls)]k, c̄, E

)

−
r∑

s=1

∑

j∈C(Nls )\{i}
Als

j (c̄, E)−
r∑

s=1

∑

k∈K

Ŵ ls
k


 ∑

j∈C(Nls )\{i}
c̄S(j,Nls )k, c̄, E


 .

Since Ŵ ls (·, c̄, E) is additive for each ls ∈ {l1, · · · , lr},

fi (c, E) = Al
i (c̄, E)−

r∑
s=1

∑

j∈Nls\{i}
Als

j (c̄, E)

+
∑

k∈K

Ŵ l
k

(
c̄S(i,Nl)k, c̄, E

)

−
r∑

s=1

∑

k∈K

Ŵ ls
k


c̄[Nls\C(Nls )]k +

∑

j∈C(Nls )\{i}
c̄S(j,Nls )k, c̄, E



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Applying the same argument for l1,

fi (c, E) = Al1
i (c̄, E)−

∑

j∈Nl\{i}
Al

j (c̄, E)−
r∑

s=2

∑

j∈Nls\{i}
Als

j (c̄, E)

+
∑

k∈K

Ŵ l1
k

(
c̄S(i,Nl1

)k, c̄, E
)

−
∑

k∈K

Ŵ l
k


c̄[Nl\C(Nl)]k +

∑

j∈C(Nl)\{i}
c̄S(j,Nl)k, c̄, E




−
r∑

s=2

∑

k∈K

Ŵ ls
k


c̄[Nls\C(Nls)]k +

∑

j∈C(Nls)\{i}
c̄S(j,Nls )k, c̄, E


 .

In order for f (·) to be well-defined, the right-hand sides of the two expressions

for fi (c, E) should be equal. This equality is equivalent to

Al
i (c̄, E) +

∑

j∈Nl\{i}
Al

j (c̄, E) +
∑

k∈K

Ŵ l
k


c̄[Nl\C(Nl)]k +

∑

j∈C(Nl)

c̄S(j,GNl
)k, c̄, E




= Al1
i (c̄, E) +

∑

j∈Nl1
\{i}

Al1
j (c̄, E) +

∑

k∈K

Ŵ l1
k


c̄[Nl1

\C(Nl1
)]k +

∑

j∈C(Nl1
)

c̄S(j,Nl1
)k, c̄, E


 .

Since for each k ∈ K,

c̄[Nl\C(Nl)]k +
∑

j∈C(Nl)

c̄S(j,Nl)k = c̄[Nl1
\C(Nl1

)]k +
∑

j∈C(Nl1
)

c̄S(j,Nl1
)k = c̄k,

we obtain (10).

Proof of Proposition 7. Note that for each l ∈ {1, . . . , L}, g : DNl
→ RNl

defined in the proof of Proposition 6 inherits any of the additional four properties

of f , efficiency, no award for nulls, non-negativity, and no transfer paradox.

Therefore, applying Proposition 2 for the two functions Al : RK
++ × R++ → RNl

and Ŵ l : R+ × RK
++ × R++ → RK that represent g, we easily obtain all the

conditions stated in Proposition 7 except for the second condition for no award

for nulls. This condition is verified below.

Let l, l′ ∈ {1, . . . , L} be such that Nl ∩ Nl′ 6= ∅ (if there is no such pair,

then L = 1 and we are done). Without loss of generality, let 1 ∈ Nl ∩ Nl′ .

Then 1 is a connection node. Since Nl′ is rigid∗, then there is i ∈ Nl′\{1}.
Let (y, E) ∈ RK

++ × R++. Let (c, E) ∈ D be such that c̄ = y and for each

j ∈ S (1, Nl) \{i}, cj = 0 (thus c1 = 0 and except for i, all nodes that succeed 1
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have the zero characteristic vector). Then c̄S(1,Nl) = ci = c̄S(i,Nl′ ). By no award for

nulls, f1 (c, E) = 0, and for each j ∈ S (1, Nl) \{i}, fj (c, E) = 0. Then, applying

(‡) in the proof of Proposition 6 twice with regard to Nl and Nl′ , we obtain

fi (c, E) =
∑

k∈K

Ŵ l
k (cik, y, E)

=
∑

k∈K

Ŵ l′
k (cik, y, E) .

Since this holds for each c with c̄ = y, then for each k ∈ K, letting cik′ = 0 for

each k′ 6= k and using the fact that by additivity, Ŵ l
k′ (0, y, E) = 0, we obtain:

Ŵ l
k (cik, y, E) = Ŵ l′

k (cik, y, E) .

C Proofs of Theorem and Proposition 8

Proof of Theorem. We skip the proof that every rule in HAW-family satisfies

reallocation-proofness, since it can be done using the same arguments as in the

proofs of Propositions 3 and 6.

Let G ≡ (N,D) be a connected graph. Let N ≡ {N1, · · · , NL} and R ≡
{GN1 , · · · , GNL

}. By Lemma 5, for each l = 1, · · · , L, |Nl| = 1 or |Nl| ≥ 3. By

Lemma 4, for each l = 1, · · · , L, Nl is again divided into Ll subsets, Ll ∈ N,

Nl1, · · · , NlLl
such that ∪Ll

m=1Nlm = Nl and for each m = 1, · · · , Ll, GNlm
is a

maximal rigid∗ subgraph on GNl
. Let G ≡ (N , E) be the graph in Definition 4.

Pick l∗ ∈ {1, · · · , L} and consider the directed tree G (Nl∗). Roughly speaking

the following proof is the combination of the arguments used in the proofs of

Propositions 3 and 6.

Let f be a rule satisfying reallocation-proofness. Then by Lemma 2, f satisfies

non-bossiness. Define a function H : RK
+ × RK

++ × R++ → RL such that for each

l ∈ L and each (x, y, E) ∈ RK
+ × RK

++ × R++,

Hl (x, y, E) ≡
∑

i∈∪s(Nl)

fi (c, E) ,

for some (c, E) ∈ D with
∑

i∈∪s(Nl)
ci = x and c̄ = y. For all other (x, y, E),

define Hl (x, y, E) arbitrarily. Since both ∪s (Nl) and N\ ∪ s (Nl) are connected

in G, then by reallocation-proofness and non-bossiness, we can show that H (·)
is well-defined.
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Let l ∈ {1, · · · , L}. If |Nl| is a singleton and so Ll = 1, then let Al1 and Ŵ l1 be

such that for each (c, E) ∈ D, Al1
i (c̄, E)+

∑
k∈K Ŵ l1

k (cik, c̄, E) = Hl

(
c̄∪s(Nl), c̄, E

)−∑
l′:Nl′∈sm(Nl)

Hl′(c̄∪s(Nl′ ), c̄, E), where i ∈ Nl. Then (13) holds and the remaining

three equations (11), (12), and (14) hold vacuously.

Now consider the case when |Nl| ≥ 3. Fix y ∈ RK
++. Let DNl

(y) ≡ {(d,E) ∈
RNl×K

++ × R++ : for some (c, E) ∈ D, c̄ = y, cNl\C∗(Nl) = dNl\C∗(Nl), and for each

i ∈ C∗(Nl), ci + c̄∪s0(Nl;i) = di}. Define g : DNl
(y) → RNl as follows: for each

(d,E) ∈ DNl
(y) and each i ∈ Nl,

gi (d,E) ≡
{

fi (c, E) , if i /∈ C∗ (Nl) ,

fi (c, E) +
∑

j∈∪so(Nl;i)
fj (c, E) , if i ∈ C∗ (Nl) ,

for some (c, E) ∈ D such that c̄ = y, c̄∪s(Nl) = d, cNl\C∗(Nl) = dNl\C∗(Nl), and

for each i ∈ C∗(Nl), ci + c̄∪s0(Nl;i) = di. We now show that g is well-defined.

Let (c, E) ∈ D and c′ ∈ RN×K
+ be such that c̄ = c̄′ = y, c̄∪s(Nl) = c̄′∪s(Nl)

= d,

cNl\C∗(Nl) = c′Nl\C∗(Nl)
= dNl\C∗(Nl), and for each i ∈ C∗(Nl), ci + c̄∪s0(Nl;i) =

c′i + c̄′∪s0(Nl;i)
= di. Since N\ ∪ s (Nl) is connected, then by reallocation-proofness

and non-bossiness, cN\∪s(Nl) is irrelevant in this definition. So without loss of

generality, we may assume that cN\∪s(Nl) = c′N\∪s(Nl)
. For each i ∈ C∗ (Nl),

let Ti ≡ {i} ∪ [∪s0 (Nl; i)]. Then Ti is connected. So by reallocation-proofness

and non-bossiness, if coalition Ti changes cTi
to c′Ti

, then the total award of

Ti and the awards of all others in N\Ti do not change. After making these

changes for all i ∈ C∗ (Nl), we end up with c′ and, throughout this process, the

total award of coalition Ti = {i} ∪ [∪s0 (Nl; i)] for each i ∈ C∗ (Nl), and the

awards for all j ∈ Nl\C∗(Nl) do not change. Therefore, for each i ∈ Nl\C∗(Nl),

fi (c, E) = fi(c
′, E), and for each i ∈ C∗(Nl), fi (c, E) +

∑
j∈∪so(Nl;i)

fj (c, E) =

fi (c
′, E) +

∑
j∈∪so(Nl;i)

fj (c′, E).

We now show that g is a rule over DNl
(y) satisfying pairwise reallocation-

proofness and pairwise non-bossiness under C(GNl
) and, therefore, reallocation-

proofness under C(GNl
). Let i∗, j∗ ∈ Nl\C∗(Nl) be such that i∗j∗ ∈ DNl

. Then

it follows from pairwise reallocation-proofness and pairwise non-bossiness of f

and the definition of g that this pair {i∗, j∗} cannot change their total award or

awards of others by any reallocation of characteristic vectors among the pair.

Now consider a pair {i∗, j∗} that is an edge in DNl
and i∗ ∈ C∗(Nl). Let

(d,E) , (d′, E) ∈ DNl
(y) be such that dNl\{i∗,j∗} = d′Nl\{i∗,j∗} and di∗ + dj∗ =

d′i∗ + d′j∗ . Let c ∈ RN×K
+ be such that c̄ = y, c̄∪s(Nl) = d̄, cNl\C∗(Nl) = dNl\C∗(Nl),

and for each i ∈ C∗(Nl), ci + c̄∪s0(Nl;i) = di. Without loss of generality, suppose

j∗ /∈ C∗(Nl) (a similar argument applies when j∗ ∈ C∗(Nl)). Let c′ ∈ RN×K
+ be

such that c′N\[{i∗,j∗}∪[∪s0(Nl;i∗)]]
= cN\[{i∗,j∗}∪[∪s0(Nl;i∗)]], c′i∗ + c̄′∪s0(Nl;i∗)

= d′i∗ , and
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c′j∗ = d′j∗ . Since di∗ + dj∗ = d′i∗ + d′j∗ , ci∗ + c̄∪s0(Nl;i∗) + cj∗ = c′i∗ + c̄′∪s0(Nl;i∗)
+ c′j∗ .

Since i∗j∗ is an edge and {i∗} ∪ [∪s0(Nl; i
∗)] is connected, {i∗, j∗} ∪ [∪s0(Nl; i

∗)]
is connected. Thus by reallocation-proofness and non-bossiness of f ,

∑

i∈{i∗}∪[∪s0(Nl;i∗)]

fi (c
′, E) + fj∗ (c′, E) =

∑

i∈{i∗}∪[∪s0(Nl;i∗)]

fi (c, E) + fj∗ (c, E) ;

fN\({i∗,j∗}∪[∪s0(Nl;i∗)]) (c′, E) = fN\({i∗,j∗}∪[∪s0(Nl;i∗)]) (c, E) .

Therefore,

gi∗ (d′, E) + gj∗ (d′, E) = gi∗ (d,E) + gj∗ (d,E) ;

gN\{i∗,j∗} (c′, E) = gN\{i∗,j∗} (c, E) .

This shows that g satisfies pairwise reallocation-proofness and pairwise non-

bossiness under C (GNl
).

Now applying Proposition 6 and the definition of H (·), we conclude that there

exists a list of functions
(
Am : RK

++ × R++ → RNlm , Ŵm : R+ × RK
++ × R++ → RK

)Ll

m=1
such that for each (d,E) ∈ DNl

(y), each m ∈ {1, · · · , Ll}, and each i ∈ Nlm, if

i ∈ Nlm\C (Nlm, GNl
) ,

gi (c, E) = Am
i (d̄, E) +

∑

k∈K

Ŵm
k (cik, d̄, E);

and if i ∈ C (Nlm, GNl
) and {GNlm1

, · · · , GNlmr
} is the set of all rigid∗ subgraphs

other than GNlm
, to which i also belongs,

gi (c, E) = Am
i

(
d̄, E

)−
r∑

s=1

∑

j∈Nlms\{i}
Ams

j (d̄, E) +
∑

k∈K

Ŵm
k

(
d̄S(i,Nlm)k, d̄, E

)

−
r∑

s=1

∑

k∈K

Ŵms
k


d̄[Nlmx\C(Nlms ,GNl

)]k +
∑

j∈C(Nlms ,GNl
)\{i}

d̄S(j,Nlms )k, d̄, E


 ,

where for each l ∈ L, Ŵm
(·, d̄, E

)
is additive and satisfies (10). Now for each

m ∈ {1, · · · , Ll}, let Alm
(
c̄∪s(Nl), c̄, E

) ≡ Am
(
c̄∪s(Nl), E

)
and for each k ∈ K,

Ŵ lm
k

(·, c̄∪s(Nl), c̄, E
) ≡ Ŵm

k

(·, c̄∪s(Nl), E
)
. Then by definition of H (·), we ob-

tain (11)-(14). For each (c, E) ∈ D, each l ∈ L, and each m ∈ {1, . . . , Ll}, both∑
i∈Nlm

Alm
i

(
c̄∪s(Nl), c̄, E

)
+

∑
k∈K Ŵ lm

k

(
c̄∪s(Nl)k, c̄∪s(Nl)k, c̄, E

)
and Hl

(
c̄∪s(Nl), c̄, E

)

measure the total award of all agents in ∪s (Nl). Thus, we obtain (15).

Proof of Proposition 8. Parts (i), (iii), and (iv) are easily obtained from

Propositions 4 and 7. The proof of H1 (·) = · · · = HL (·) in part (ii) is the

same as in Proposition 4. Let H0 (·) ≡ H1 (·) = · · · = HL (·).
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Claim 1. For each (c, E) ∈ D, H0 (·, c̄, E) is additive.

Proof. Assume that L ≥ 2 and there is l ∈ {1, . . . , L} such that |Nl| ≥ 3.

Without loss of generality, let |N1| ≥ 3 and sm (N1) 6= ∅ (if sm (N1) = ∅, then

since L ≥ 2, we can change the root Nl∗ so that sm (N1) 6= ∅). Assume that

N2 ∈ sm (N2), 1 ∈ N1, 2 ∈ N2, and {1, 2} ∈ D. Since |N1| ≥ 3 and N1 is rigid,

there are i, j ∈ N1\{1} such that {i, 1}, {j, 1} ∈ D. Let y, z, d ∈ RK
+ be such that

y + z ≤ d. Let (c, E) ∈ D be such that c̄ = d and for each h ∈ ∪s(N1)\{i, j},
ch = 0 (so c1 = c2 = 0), ci = y, and cj = z. Then by no award for nulls, for each

h ∈ ∪s(N1)\{i, j}, fh (c, E) = 0, and c̄∪s(N1) = y + z. Thus

fi (c, E) + fj (c, E) = H0 (y + z, c̄, E) . (†)

Let c′ be such that c′i = c2(= 0), c′2 = ci(= y) and c′N\{i,2} = cN\{i,2}. Since

{i, 1, 2} are connected, then by reallocation-proofness,

fi (c, E) + f1 (c, E) + f2 (c, E) = fi (c
′, E) + f1 (c′, E) + f2 (c′, E) .

Thus by no award for nulls

fi (c, E) = f2 (c′, E) . (‡)

By no award for nulls, for each h ∈ ∪s (N2) \{2}, fh (c′, E) = 0, and c̄∪s(N2) = y.

Thus, f2 (c′, E) = H0 (y, c̄, E). Using (‡), we obtain

fi (c, E) = H0 (y, c̄, E) .

Similarly, we can show

fj (c, E) = H0 (z, c̄, E) .

Thus, by (†),
H0 (y, c̄, E) + H0 (z, c̄, E) = H0 (y + z, c̄, E) .

Therefore, H0 (·, c̄, E) is additive. ¨

Claim 2. For each (c, E) ∈ D and each i ∈ N , fi (c, E) = H0 (ci, c̄, E).

Proof. Let l ∈ {1, . . . , L} be such that Nl is an end node of G (Nl∗). Let

m ∈ {1, . . . , L} be such that Nm = pm(Nl). Let il ∈ Nl and im ∈ Nm be such

that {il, im} ∈ D (thus {il, im} is a connection edge). Let (c, E) ∈ D. Let c′ be

such that c′il = cil + cim , c′im = 0, and c′N\{il,im} = cN\{il,im}. Since Nl ∪ {im} is

connected and Nl is an end node on G (Nl∗), then by reallocation-proofness and
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the definition of H0 (·),

fim (c, E) +
∑
i∈Nl

fi (c, E) = fim (c, E) + H0 (c̄Nl
, c̄, E)

= fim (c′, E) +
∑
i∈Nl

fi (c
′, E) = fim (c′, E) + H0

(
c̄′Nl

, c̄, E
)

= fim (c′, E) + H0 (cim + c̄Nl
, c̄, E) .

By no award for nulls, fim (c′, E) = 0. Thus by additivity of H0 (·, c̄, E),

fim (c, E) = H0 (cim , c̄, E) . (?)

Let i ∈ Nm be such that {i, im} ∈ D. Let c′′ be such that c′′i = 0, c′′im =

ci + cim , and c′′N\{i,im} = cN\{i,im}. Then by (?), fim (c′′, E) = H0(c
′′
im , c̄, E). By

reallocation-proofness and no award for nulls,

fi (c, E) + fim (c, E) = fim (c′′, E) = H0

(
c′′im , c̄, E

)
.

By (?) and additivity of H0 (·, c̄, E), fi (c, E) = H0 (ci, c̄, E). The same argument

can be used to show: for each i ∈ Nm,

fi (c, E) = H0 (ci, c̄, E) . (??)

Now let c∗ be such that c∗im = cil + cim , c∗il = 0, and c∗N\{il,im} = cN\{il,im}. Then

by reallocation-proofness, no award for nulls, and (?),

fil (c, E) + H0 (cim , c̄, E) = fim(c∗, E) = H0(c
∗
im , c̄, E).

Thus by additivity of H0 (·, c̄, E),

fil (c, E) = H0 (cil , c̄, E) .

Using this and the same argument that is used for (??), we can show: for each

i ∈ Nl,

fi (c, E) = H0 (ci, c̄, E) .

Now moving backward on the three G (Nl∗), we can show this equation for each

i ∈ N . ¨
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