30,967 research outputs found

    Circuits with Medium Fan-In

    Get PDF
    We consider boolean circuits in which every gate may compute an arbitrary boolean function of k other gates, for a parameter k. We give an explicit function $f:{0,1}^n -> {0,1} that requires at least Omega(log^2(n)) non-input gates when k = 2n/3. When the circuit is restricted to being layered and depth 2, we prove a lower bound of n^(Omega(1)) on the number of non-input gates. When the circuit is a formula with gates of fan-in k, we give a lower bound Omega(n^2/k*log(n)) on the total number of gates. Our model is connected to some well known approaches to proving lower bounds in complexity theory. Optimal lower bounds for the Number-On-Forehead model in communication complexity, or for bounded depth circuits in AC_0, or extractors for varieties over small fields would imply strong lower bounds in our model. On the other hand, new lower bounds for our model would prove new time-space tradeoffs for branching programs and impossibility results for (fan-in 2) circuits with linear size and logarithmic depth. In particular, our lower bound gives a different proof for a known time-space tradeoff for oblivious branching programs

    Signal propagation and noisy circuits

    Get PDF
    The information carried by a signal decays when the signal is corrupted by random noise. This occurs when a message is transmitted over a noisy channel, as well as when a noisy component performs computation. We first study this signal decay in the context of communication and obtain a tight bound on the rate at which information decreases as a signal crosses a noisy channel. We then use this information theoretic result to obtain depth lower bounds in the noisy circuit model of computation defined by von Neumann. In this model, each component fails (produces 1 instead of 0 or vice-versa) independently with a fixed probability, and yet the output of the circuit is required to be correct with high probability. Von Neumann showed how to construct circuits in this model that reliably compute a function and are no more than a constant factor deeper than noiseless circuits for the function. We provide a lower bound on the multiplicative increase in circuit depth necessary for reliable computation, and an upper bound on the maximum level of noise at which reliable computation is possible

    String Matching: Communication, Circuits, and Learning

    Get PDF
    String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem
    • …
    corecore