19 research outputs found

    Efficient quantum protocols for XOR functions

    Full text link
    We show that for any Boolean function f on {0,1}^n, the bounded-error quantum communication complexity of XOR functions fβˆ˜βŠ•f\circ \oplus satisfies that QΟ΅(fβˆ˜βŠ•)=O(2d(log⁑βˆ₯f^βˆ₯1,Ο΅+log⁑nΟ΅)log⁑(1/Ο΅))Q_\epsilon(f\circ \oplus) = O(2^d (\log\|\hat f\|_{1,\epsilon} + \log \frac{n}{\epsilon}) \log(1/\epsilon)), where d is the F2-degree of f, and βˆ₯f^βˆ₯1,Ο΅=min⁑g:βˆ₯fβˆ’gβˆ₯βˆžβ‰€Ο΅βˆ₯f^βˆ₯1\|\hat f\|_{1,\epsilon} = \min_{g:\|f-g\|_\infty \leq \epsilon} \|\hat f\|_1. This implies that the previous lower bound QΟ΅(fβˆ˜βŠ•)=Ξ©(log⁑βˆ₯f^βˆ₯1,Ο΅)Q_\epsilon(f\circ \oplus) = \Omega(\log\|\hat f\|_{1,\epsilon}) by Lee and Shraibman \cite{LS09} is tight for f with low F2-degree. The result also confirms the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition, we show that the exact quantum communication complexity satisfies QE(f)=O(2dlog⁑βˆ₯f^βˆ₯0)Q_E(f) = O(2^d \log \|\hat f\|_0), where βˆ₯f^βˆ₯0\|\hat f\|_0 is the number of nonzero Fourier coefficients of f. This matches the previous lower bound QE(f(x,y))=Ξ©(log⁑rank(Mf))Q_E(f(x,y)) = \Omega(\log rank(M_f)) by Buhrman and de Wolf \cite{BdW01} for low-degree XOR functions.Comment: 11 pages, no figur

    Spectral Norm of Symmetric Functions

    Full text link
    The spectral norm of a Boolean function f:{0,1}nβ†’{βˆ’1,1}f:\{0,1\}^n \to \{-1,1\} is the sum of the absolute values of its Fourier coefficients. This quantity provides useful upper and lower bounds on the complexity of a function in areas such as learning theory, circuit complexity, and communication complexity. In this paper, we give a combinatorial characterization for the spectral norm of symmetric functions. We show that the logarithm of the spectral norm is of the same order of magnitude as r(f)log⁑(n/r(f))r(f)\log(n/r(f)) where r(f)=max⁑{r0,r1}r(f) = \max\{r_0,r_1\}, and r0r_0 and r1r_1 are the smallest integers less than n/2n/2 such that f(x)f(x) or f(x)β‹…parity(x)f(x) \cdot parity(x) is constant for all xx with βˆ‘xi∈[r0,nβˆ’r1]\sum x_i \in [r_0, n-r_1]. We mention some applications to the decision tree and communication complexity of symmetric functions

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(x∧y)f(x \wedge y) and f(xβŠ•y)f(x\oplus y) with monotone functions ff, where ∧\wedge and βŠ•\oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    A composition theorem for parity kill number

    Full text link
    In this work, we study the parity complexity measures Cminβ‘βŠ•[f]{\mathsf{C}^{\oplus}_{\min}}[f] and DTβŠ•[f]{\mathsf{DT^{\oplus}}}[f]. Cminβ‘βŠ•[f]{\mathsf{C}^{\oplus}_{\min}}[f] is the \emph{parity kill number} of ff, the fewest number of parities on the input variables one has to fix in order to "kill" ff, i.e. to make it constant. DTβŠ•[f]{\mathsf{DT^{\oplus}}}[f] is the depth of the shortest \emph{parity decision tree} which computes ff. These complexity measures have in recent years become increasingly important in the fields of communication complexity \cite{ZS09, MO09, ZS10, TWXZ13} and pseudorandomness \cite{BK12, Sha11, CT13}. Our main result is a composition theorem for Cminβ‘βŠ•{\mathsf{C}^{\oplus}_{\min}}. The kk-th power of ff, denoted f∘kf^{\circ k}, is the function which results from composing ff with itself kk times. We prove that if ff is not a parity function, then Cminβ‘βŠ•[f∘k]β‰₯Ξ©(Cmin⁑[f]k).{\mathsf{C}^{\oplus}_{\min}}[f^{\circ k}] \geq \Omega({\mathsf{C}_{\min}}[f]^{k}). In other words, the parity kill number of ff is essentially supermultiplicative in the \emph{normal} kill number of ff (also known as the minimum certificate complexity). As an application of our composition theorem, we show lower bounds on the parity complexity measures of Sort∘k\mathsf{Sort}^{\circ k} and HI∘k\mathsf{HI}^{\circ k}. Here Sort\mathsf{Sort} is the sort function due to Ambainis \cite{Amb06}, and HI\mathsf{HI} is Kushilevitz's hemi-icosahedron function \cite{NW95}. In doing so, we disprove a conjecture of Montanaro and Osborne \cite{MO09} which had applications to communication complexity and computational learning theory. In addition, we give new lower bounds for conjectures of \cite{MO09,ZS10} and \cite{TWXZ13}

    Fourier sparsity, spectral norm, and the Log-rank conjecture

    Full text link
    We study Boolean functions with sparse Fourier coefficients or small spectral norm, and show their applications to the Log-rank Conjecture for XOR functions f(x\oplus y) --- a fairly large class of functions including well studied ones such as Equality and Hamming Distance. The rank of the communication matrix M_f for such functions is exactly the Fourier sparsity of f. Let d be the F2-degree of f and D^CC(f) stand for the deterministic communication complexity for f(x\oplus y). We show that 1. D^CC(f) = O(2^{d^2/2} log^{d-2} ||\hat f||_1). In particular, the Log-rank conjecture holds for XOR functions with constant F2-degree. 2. D^CC(f) = O(d ||\hat f||_1) = O(\sqrt{rank(M_f)}\logrank(M_f)). We obtain our results through a degree-reduction protocol based on a variant of polynomial rank, and actually conjecture that its communication cost is already \log^{O(1)}rank(M_f). The above bounds also hold for the parity decision tree complexity of f, a measure that is no less than the communication complexity (up to a factor of 2). Along the way we also show several structural results about Boolean functions with small F2-degree or small spectral norm, which could be of independent interest. For functions f with constant F2-degree: 1) f can be written as the summation of quasi-polynomially many indicator functions of subspaces with \pm-signs, improving the previous doubly exponential upper bound by Green and Sanders; 2) being sparse in Fourier domain is polynomially equivalent to having a small parity decision tree complexity; 3) f depends only on polylog||\hat f||_1 linear functions of input variables. For functions f with small spectral norm: 1) there is an affine subspace with co-dimension O(||\hat f||_1) on which f is a constant; 2) there is a parity decision tree with depth O(||\hat f||_1 log ||\hat f||_0).Comment: v2: Corollary 31 of v1 removed because of a bug in the proof. (Other results not affected.

    Bounds on oblivious multiparty quantum communication complexity

    Full text link
    The main conceptual contribution of this paper is investigating quantum multiparty communication complexity in the setting where communication is \emph{oblivious}. This requirement, which to our knowledge is satisfied by all quantum multiparty protocols in the literature, means that the communication pattern, and in particular the amount of communication exchanged between each pair of players at each round is fixed \emph{independently of the input} before the execution of the protocol. We show, for a wide class of functions, how to prove strong lower bounds on their oblivious quantum kk-party communication complexity using lower bounds on their \emph{two-party} communication complexity. We apply this technique to prove tight lower bounds for all symmetric functions with \textsf{AND} gadget, and in particular obtain an optimal Ξ©(kn)\Omega(k\sqrt{n}) lower bound on the oblivious quantum kk-party communication complexity of the nn-bit Set-Disjointness function. We also show the tightness of these lower bounds by giving (nearly) matching upper bounds.Comment: 13 pages, an accepted paper of LATIN 202
    corecore