6 research outputs found

    Computational aspects of communication amid uncertainty

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 203-215).This thesis focuses on the role of uncertainty in communication and effective (computational) methods to overcome uncertainty. A classical form of uncertainty arises from errors introduced by the communication channel but uncertainty can arise in many other ways if the communicating players do not completely know (or understand) each other. For example, it can occur as mismatches in the shared randomness used by the distributed agents, or as ambiguity in the shared context or goal of the communication. We study many modern models of uncertainty, some of which have been considered in the literature but are not well-understood, while others are introduced in this thesis: Uncertainty in Shared Randomness -- We study common randomness and secret key generation. In common randomness generation, two players are given access to correlated randomness and are required to agree on pure random bits while minimizing communication and maximizing agreement probability. Secret key generation refers to the setup where, in addition, the generated random key is required to be secure against any eavesdropper. These setups are of significant importance in information theory and cryptography. We obtain the first explicit and sample-efficient schemes with the optimal trade-offs between communication, agreement probability and entropy of generated common random bits, in the one-way communication setting. -- We obtain the first decidability result for the computational problem of the noninteractive simulation of joint distributions, which asks whether two parties can convert independent identically distributed samples from a given source of correlation into another desired form of correlation. This class of problems has been well-studied in information theory and its computational complexity has been wide open. Uncertainty in Goal of Communication -- We introduce a model for communication with functional uncertainty. In this setup, we consider the classical model of communication complexity of Yao, and study how this complexity changes if the function being computed is not completely known to both players. This forms a mathematical analogue of a natural situation in human communication: Communicating players do not a priori know what the goal of communication is. We design efficient protocols for dealing with uncertainty in this model in a broad setting. Our solution relies on public random coins being shared by the communicating players. We also study the question of relaxing this requirement and present several results answering different aspects of this question. Uncertainty in Prior Distribution -- We study data compression in a distributed setting where several players observe messages from an unknown distribution, which they wish to encode, communicate and decode. In this setup, we design and analyze a simple, decentralized and efficient protocol. In this thesis, we study these various forms of uncertainty, and provide novel solutions using tools from various areas of theoretical computer science, information theory and mathematics."This research was supported in part by an NSF STC Award CCF 0939370, NSF award numbers CCF-1217423, CCF-1650733 and CCF-1420692, an Irwin and Joan Jacobs Presidential Fellowship and an IBM Ph.D. Fellowship"--Page 7.by Badih Ghazi.Ph. D

    College Faculty in the News: November 27, 2019

    Get PDF
    Nancy Martorano Miller, Department of Political Science, recently discussed how breaks in state party ties could affect national election outcomes. Follow this and other recent media coverage of the service, research, scholarship and commentary of College of Arts and Sciences programs and their faculty

    Communication with Contextual Uncertainty

    Full text link
    We introduce a simple model illustrating the role of context in communication and the challenge posed by uncertainty of knowledge of context. We consider a variant of distributional communication complexity where Alice gets some information xx and Bob gets yy, where (x,y)(x,y) is drawn from a known distribution, and Bob wishes to compute some function g(x,y)g(x,y) (with high probability over (x,y)(x,y)). In our variant, Alice does not know gg, but only knows some function ff which is an approximation of gg. Thus, the function being computed forms the context for the communication, and knowing it imperfectly models (mild) uncertainty in this context. A naive solution would be for Alice and Bob to first agree on some common function hh that is close to both ff and gg and then use a protocol for hh to compute h(x,y)h(x,y). We show that any such agreement leads to a large overhead in communication ruling out such a universal solution. In contrast, we show that if gg has a one-way communication protocol with complexity kk in the standard setting, then it has a communication protocol with complexity O(k⋅(1+I))O(k \cdot (1+I)) in the uncertain setting, where II denotes the mutual information between xx and yy. In the particular case where the input distribution is a product distribution, the protocol in the uncertain setting only incurs a constant factor blow-up in communication and error. Furthermore, we show that the dependence on the mutual information II is required. Namely, we construct a class of functions along with a non-product distribution over (x,y)(x,y) for which the communication complexity is a single bit in the standard setting but at least Ω(n)\Omega(\sqrt{n}) bits in the uncertain setting.Comment: 20 pages + 1 title pag

    The Power of Shared Randomness in Uncertain Communication

    Get PDF
    In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated the study of communication with contextual uncertainty, a setup aiming to understand how efficient communication is possible when the communicating parties imperfectly share a huge context. In this setting, Alice is given a function f and an input string x, and Bob is given a function g and an input string y. The pair (x,y) comes from a known distribution mu and f and g are guaranteed to be close under this distribution. Alice and Bob wish to compute g(x,y) with high probability. The lack of agreement between Alice and Bob on the function that is being computed captures the uncertainty in the context. The previous work showed that any problem with one-way communication complexity k in the standard model (i.e., without uncertainty, in other words, under the promise that f=g) has public-coin communication at most O(k(1+I)) bits in the uncertain case, where I is the mutual information between x and y. Moreover, a lower bound of Omega(sqrt{I}) bits on the public-coin uncertain communication was also shown. However, an important question that was left open is related to the power that public randomness brings to uncertain communication. Can Alice and Bob achieve efficient communication amid uncertainty without using public randomness? And how powerful are public-coin protocols in overcoming uncertainty? Motivated by these two questions: - We prove the first separation between private-coin uncertain communication and public-coin uncertain communication. Namely, we exhibit a function class for which the communication in the standard model and the public-coin uncertain communication are O(1) while the private-coin uncertain communication is a growing function of n (the length of the inputs). This lower bound (proved with respect to the uniform distribution) is in sharp contrast with the case of public-coin uncertain communication which was shown by the previous work to be within a constant factor from the certain communication. This lower bound also implies the first separation between public-coin uncertain communication and deterministic uncertain communication. Interestingly, we also show that if Alice and Bob imperfectly share a sequence of random bits (a setup weaker than public randomness), then achieving a constant blow-up in communication is still possible. - We improve the lower-bound of the previous work on public-coin uncertain communication. Namely, we exhibit a function class and a distribution (with mutual information I approx n) for which the one-way certain communication is k bits but the one-way public-coin uncertain communication is at least Omega(sqrt{k}*sqrt{I}) bits. Our proofs introduce new problems in the standard communication complexity model and prove lower bounds for these problems. Both the problems and the lower bound techniques may be of general interest

    Deterministic compression with uncertain priors

    Full text link
    a
    corecore