2 research outputs found

    Communication Optimization of Iterative Sparse Matrix-Vector Multiply on GPUs and FPGAs

    No full text
    Trading communication with redundant computation can increase the silicon efficiency of FPGAs and GPUs in accelerating communication-bound sparse iterative solvers. While k iterations of the iterative solver can be unrolled to provide O(k) reduction in communication cost, the extent of this unrolling depends on the underlying architecture, its memory model, and the growth in redundant computation. This paper presents a systematic procedure to select this algorithmic parameter k, which provides communication-computation tradeoff on hardware accelerators like FPGA and GPU. We provide predictive models to understand this tradeoff and show how careful selection of k can lead to performance improvement that otherwise demands significant increase in memory bandwidth. On an Nvidia C2050 GPU, we demonstrate a 1.9×-42.6× speedup over standard iterative solvers for a range of benchmarks and that this speedup is limited by the growth in redundant computation. In contrast, for FPGAs, we present an architecture-aware algorithm that limits off-chip communication but allows communication between the processing cores. This reduces redundant computation and allows large k and hence higher speedups. Our approach for FPGA provides a 0.3×-4.4× speedup over same-generation GPU devices where k is picked carefully for both architectures for a range of benchmarks.Accepted versio

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications
    corecore