53 research outputs found

    Communication Complexity Lower Bounds by Polynomials

    Full text link
    The quantum version of communication complexity allows the two communicating parties to exchange qubits and/or to make use of prior entanglement (shared EPR-pairs). Some lower bound techniques are available for qubit communication complexity, but except for the inner product function, no bounds are known for the model with unlimited prior entanglement. We show that the log-rank lower bound extends to the strongest model (qubit communication + unlimited prior entanglement). By relating the rank of the communication matrix to properties of polynomials, we are able to derive some strong bounds for exact protocols. In particular, we prove both the "log-rank conjecture" and the polynomial equivalence of quantum and classical communication complexity for various classes of functions. We also derive some weaker bounds for bounded-error quantum protocols.Comment: 16 pages LaTeX, no figures. 2nd version: rewritten and some results adde

    A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions

    Full text link
    The degrees of polynomials representing or approximating Boolean functions are a prominent tool in various branches of complexity theory. Sherstov recently characterized the minimal degree deg_{\eps}(f) among all polynomials (over the reals) that approximate a symmetric function f:{0,1}^n-->{0,1} up to worst-case error \eps: deg_{\eps}(f) = ~\Theta(deg_{1/3}(f) + \sqrt{n\log(1/\eps)}). In this note we show how a tighter version (without the log-factors hidden in the ~\Theta-notation), can be derived quite easily using the close connection between polynomials and quantum algorithms.Comment: 7 pages LaTeX. 2nd version: corrected a few small inaccuracie

    Efficient quantum protocols for XOR functions

    Full text link
    We show that for any Boolean function f on {0,1}^n, the bounded-error quantum communication complexity of XOR functions ff\circ \oplus satisfies that Qϵ(f)=O(2d(logf^1,ϵ+lognϵ)log(1/ϵ))Q_\epsilon(f\circ \oplus) = O(2^d (\log\|\hat f\|_{1,\epsilon} + \log \frac{n}{\epsilon}) \log(1/\epsilon)), where d is the F2-degree of f, and f^1,ϵ=ming:fgϵf^1\|\hat f\|_{1,\epsilon} = \min_{g:\|f-g\|_\infty \leq \epsilon} \|\hat f\|_1. This implies that the previous lower bound Qϵ(f)=Ω(logf^1,ϵ)Q_\epsilon(f\circ \oplus) = \Omega(\log\|\hat f\|_{1,\epsilon}) by Lee and Shraibman \cite{LS09} is tight for f with low F2-degree. The result also confirms the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition, we show that the exact quantum communication complexity satisfies QE(f)=O(2dlogf^0)Q_E(f) = O(2^d \log \|\hat f\|_0), where f^0\|\hat f\|_0 is the number of nonzero Fourier coefficients of f. This matches the previous lower bound QE(f(x,y))=Ω(logrank(Mf))Q_E(f(x,y)) = \Omega(\log rank(M_f)) by Buhrman and de Wolf \cite{BdW01} for low-degree XOR functions.Comment: 11 pages, no figur

    Probabilistic communication complexity over the reals

    Full text link
    Deterministic and probabilistic communication protocols are introduced in which parties can exchange the values of polynomials (rather than bits in the usual setting). It is established a sharp lower bound 2n2n on the communication complexity of recognizing the 2n2n-dimensional orthant, on the other hand the probabilistic communication complexity of its recognizing does not exceed 4. A polyhedron and a union of hyperplanes are constructed in \RR^{2n} for which a lower bound n/2n/2 on the probabilistic communication complexity of recognizing each is proved. As a consequence this bound holds also for the EMPTINESS and the KNAPSACK problems

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Unbounded-Error Classical and Quantum Communication Complexity

    Full text link
    Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86}, the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, \cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum} communication complexity in the {\em one-way communication} model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the {\em two-way} and {\em simultaneous message passing} (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for {\em any} partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between {\em weakly} unbounded-error quantum and classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200

    Quantum communication complexity of symmetric predicates

    Get PDF
    We completely (that is, up to a logarithmic factor) characterize the bounded-error quantum communication complexity of every predicate f(x,y)f(x,y) depending only on xy|x\cap y| (x,y[n]x,y\subseteq [n]). Namely, for a predicate DD on {0,1,...,n}\{0,1,...,n\} let \ell_0(D)\df \max\{\ell : 1\leq\ell\leq n/2\land D(\ell)\not\equiv D(\ell-1)\} and \ell_1(D)\df \max\{n-\ell : n/2\leq\ell < n\land D(\ell)\not\equiv D(\ell+1)\}. Then the bounded-error quantum communication complexity of fD(x,y)=D(xy)f_D(x,y) = D(|x\cap y|) is equal (again, up to a logarithmic factor) to n0(D)+1(D)\sqrt{n\ell_0(D)}+\ell_1(D). In particular, the complexity of the set disjointness predicate is Ω(n)\Omega(\sqrt n). This result holds both in the model with prior entanglement and without it.Comment: 20 page
    corecore